Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)+5cos(x)-8=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)+5cos(x)−8=0

Solution

x=1.88390…+2πn,x=−1.88390…+2πn,x=1.18685…+2πn,x=2π−1.18685…+2πn
+1
Degrees
x=107.93989…∘+360∘n,x=−107.93989…∘+360∘n,x=68.00170…∘+360∘n,x=291.99829…∘+360∘n
Solution steps
tan2(x)+5cos(x)−8=0
Rewrite using trig identities
−8+tan2(x)+5cos(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−8+(cos(x)sin(x)​)2+5cos(x)
Apply exponent rule: (ba​)c=bcac​=−8+cos2(x)sin2(x)​+5cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−8+cos2(x)1−cos2(x)​+5cos(x)
−8+cos2(x)1−cos2(x)​+5cos(x)=0
Solve by substitution
−8+cos2(x)1−cos2(x)​+5cos(x)=0
Let: cos(x)=u−8+u21−u2​+5u=0
−8+u21−u2​+5u=0:u≈−0.30801…,u≈0.37457…,u≈1.73344…
−8+u21−u2​+5u=0
Multiply both sides by u2
−8+u21−u2​+5u=0
Multiply both sides by u2−8u2+u21−u2​u2+5uu2=0⋅u2
Simplify
−8u2+u21−u2​u2+5uu2=0⋅u2
Simplify u21−u2​u2:1−u2
u21−u2​u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(1−u2)u2​
Cancel the common factor: u2=1−u2
Simplify 5uu2:5u3
5uu2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=5u1+2
Add the numbers: 1+2=3=5u3
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
−8u2+1−u2+5u3=0
Simplify −8u2+1−u2+5u3:5u3−9u2+1
−8u2+1−u2+5u3
Group like terms=5u3−8u2−u2+1
Add similar elements: −8u2−u2=−9u2=5u3−9u2+1
5u3−9u2+1=0
5u3−9u2+1=0
5u3−9u2+1=0
Solve 5u3−9u2+1=0:u≈−0.30801…,u≈0.37457…,u≈1.73344…
5u3−9u2+1=0
Find one solution for 5u3−9u2+1=0 using Newton-Raphson:u≈−0.30801…
5u3−9u2+1=0
Newton-Raphson Approximation Definition
f(u)=5u3−9u2+1
Find f′(u):15u2−18u
dud​(5u3−9u2+1)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(5u3)−dud​(9u2)+dud​(1)
dud​(5u3)=15u2
dud​(5u3)
Take the constant out: (a⋅f)′=a⋅f′=5dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5⋅3u3−1
Simplify=15u2
dud​(9u2)=18u
dud​(9u2)
Take the constant out: (a⋅f)′=a⋅f′=9dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=9⋅2u2−1
Simplify=18u
dud​(1)=0
dud​(1)
Derivative of a constant: dxd​(a)=0=0
=15u2−18u+0
Simplify=15u2−18u
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.60606…:Δu1​=0.39393…
f(u0​)=5(−1)3−9(−1)2+1=−13f′(u0​)=15(−1)2−18(−1)=33u1​=−0.60606…
Δu1​=∣−0.60606…−(−1)∣=0.39393…Δu1​=0.39393…
u2​=−0.39783…:Δu2​=0.20822…
f(u1​)=5(−0.60606…)3−9(−0.60606…)2+1=−3.41884…f′(u1​)=15(−0.60606…)2−18(−0.60606…)=16.41873…u2​=−0.39783…
Δu2​=∣−0.39783…−(−0.60606…)∣=0.20822…Δu2​=0.20822…
u3​=−0.32030…:Δu3​=0.07753…
f(u2​)=5(−0.39783…)3−9(−0.39783…)2+1=−0.73926…f′(u2​)=15(−0.39783…)2−18(−0.39783…)=9.53504…u3​=−0.32030…
Δu3​=∣−0.32030…−(−0.39783…)∣=0.07753…Δu3​=0.07753…
u4​=−0.30830…:Δu4​=0.01199…
f(u3​)=5(−0.32030…)3−9(−0.32030…)2+1=−0.08764…f′(u3​)=15(−0.32030…)2−18(−0.32030…)=7.30431…u4​=−0.30830…
Δu4​=∣−0.30830…−(−0.32030…)∣=0.01199…Δu4​=0.01199…
u5​=−0.30801…:Δu5​=0.00028…
f(u4​)=5(−0.30830…)3−9(−0.30830…)2+1=−0.00197…f′(u4​)=15(−0.30830…)2−18(−0.30830…)=6.97521…u5​=−0.30801…
Δu5​=∣−0.30801…−(−0.30830…)∣=0.00028…Δu5​=0.00028…
u6​=−0.30801…:Δu6​=1.5734E−7
f(u5​)=5(−0.30801…)3−9(−0.30801…)2+1=−1.09626E−6f′(u5​)=15(−0.30801…)2−18(−0.30801…)=6.96748…u6​=−0.30801…
Δu6​=∣−0.30801…−(−0.30801…)∣=1.5734E−7Δu6​=1.5734E−7
u≈−0.30801…
Apply long division:u+0.30801…5u3−9u2+1​=5u2−10.54009…u+3.24655…
5u2−10.54009…u+3.24655…≈0
Find one solution for 5u2−10.54009…u+3.24655…=0 using Newton-Raphson:u≈0.37457…
5u2−10.54009…u+3.24655…=0
Newton-Raphson Approximation Definition
f(u)=5u2−10.54009…u+3.24655…
Find f′(u):10u−10.54009…
dud​(5u2−10.54009…u+3.24655…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(5u2)−dud​(10.54009…u)+dud​(3.24655…)
dud​(5u2)=10u
dud​(5u2)
Take the constant out: (a⋅f)′=a⋅f′=5dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=5⋅2u2−1
Simplify=10u
dud​(10.54009…u)=10.54009…
dud​(10.54009…u)
Take the constant out: (a⋅f)′=a⋅f′=10.54009…dudu​
Apply the common derivative: dudu​=1=10.54009…⋅1
Simplify=10.54009…
dud​(3.24655…)=0
dud​(3.24655…)
Derivative of a constant: dxd​(a)=0=0
=10u−10.54009…+0
Simplify=10u−10.54009…
Let u0​=0Compute un+1​ until Δun+1​<0.000001
u1​=0.30801…:Δu1​=0.30801…
f(u0​)=5⋅02−10.54009…⋅0+3.24655…=3.24655…f′(u0​)=10⋅0−10.54009…=−10.54009…u1​=0.30801…
Δu1​=∣0.30801…−0∣=0.30801…Δu1​=0.30801…
u2​=0.37160…:Δu2​=0.06359…
f(u1​)=5⋅0.30801…2−10.54009…⋅0.30801…+3.24655…=0.47437…f′(u1​)=10⋅0.30801…−10.54009…=−7.45990…u2​=0.37160…
Δu2​=∣0.37160…−0.30801…∣=0.06359…Δu2​=0.06359…
u3​=0.37457…:Δu3​=0.00296…
f(u2​)=5⋅0.37160…2−10.54009…⋅0.37160…+3.24655…=0.02021…f′(u2​)=10⋅0.37160…−10.54009…=−6.82399…u3​=0.37457…
Δu3​=∣0.37457…−0.37160…∣=0.00296…Δu3​=0.00296…
u4​=0.37457…:Δu4​=6.46028E−6
f(u3​)=5⋅0.37457…2−10.54009…⋅0.37457…+3.24655…=0.00004…f′(u3​)=10⋅0.37457…−10.54009…=−6.79437…u4​=0.37457…
Δu4​=∣0.37457…−0.37457…∣=6.46028E−6Δu4​=6.46028E−6
u5​=0.37457…:Δu5​=3.07134E−11
f(u4​)=5⋅0.37457…2−10.54009…⋅0.37457…+3.24655…=2.08676E−10f′(u4​)=10⋅0.37457…−10.54009…=−6.79430…u5​=0.37457…
Δu5​=∣0.37457…−0.37457…∣=3.07134E−11Δu5​=3.07134E−11
u≈0.37457…
Apply long division:u−0.37457…5u2−10.54009…u+3.24655…​=5u−8.66720…
5u−8.66720…≈0
u≈1.73344…
The solutions areu≈−0.30801…,u≈0.37457…,u≈1.73344…
u≈−0.30801…,u≈0.37457…,u≈1.73344…
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −8+u21−u2​+5u and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u≈−0.30801…,u≈0.37457…,u≈1.73344…
Substitute back u=cos(x)cos(x)≈−0.30801…,cos(x)≈0.37457…,cos(x)≈1.73344…
cos(x)≈−0.30801…,cos(x)≈0.37457…,cos(x)≈1.73344…
cos(x)=−0.30801…:x=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
cos(x)=−0.30801…
Apply trig inverse properties
cos(x)=−0.30801…
General solutions for cos(x)=−0.30801…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
x=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
cos(x)=0.37457…:x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
cos(x)=0.37457…
Apply trig inverse properties
cos(x)=0.37457…
General solutions for cos(x)=0.37457…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
cos(x)=1.73344…:No Solution
cos(x)=1.73344…
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn,x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
Show solutions in decimal formx=1.88390…+2πn,x=−1.88390…+2πn,x=1.18685…+2πn,x=2π−1.18685…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(x)=2-2sin^2(x)100=100+40sin((9pi)/4 t)tan(φ)=-1/(sqrt(3))sin(3m)=0cos(a)=-8/17 ,sin(b)= 3/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024