Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4/(cos(x))-6=tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)4​−6=tan(x)

Solution

x=2π−0.68802…+2πn,x=1.01832…+2πn
+1
Degrees
x=320.57910…∘+360∘n,x=58.34553…∘+360∘n
Solution steps
cos(x)4​−6=tan(x)
Subtract tan(x) from both sidescos(x)4​−6−tan(x)=0
Simplify cos(x)4​−6−tan(x):cos(x)4−6cos(x)−tan(x)cos(x)​
cos(x)4​−6−tan(x)
Convert element to fraction: 6=cos(x)6cos(x)​,tan(x)=cos(x)tan(x)cos(x)​=cos(x)4​−cos(x)6cos(x)​−cos(x)tan(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)4−6cos(x)−tan(x)cos(x)​
cos(x)4−6cos(x)−tan(x)cos(x)​=0
g(x)f(x)​=0⇒f(x)=04−6cos(x)−tan(x)cos(x)=0
Express with sin, cos4−6cos(x)−cos(x)sin(x)​cos(x)=0
Simplify 4−6cos(x)−cos(x)sin(x)​cos(x):4−6cos(x)−sin(x)
4−6cos(x)−cos(x)sin(x)​cos(x)
cos(x)sin(x)​cos(x)=sin(x)
cos(x)sin(x)​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)cos(x)​
Cancel the common factor: cos(x)=sin(x)
=4−6cos(x)−sin(x)
4−6cos(x)−sin(x)=0
Add sin(x) to both sides4−6cos(x)=sin(x)
Square both sides(4−6cos(x))2=sin2(x)
Subtract sin2(x) from both sides(4−6cos(x))2−sin2(x)=0
Rewrite using trig identities
(4−6cos(x))2−sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(4−6cos(x))2−(1−cos2(x))
Simplify (4−6cos(x))2−(1−cos2(x)):37cos2(x)−48cos(x)+15
(4−6cos(x))2−(1−cos2(x))
(4−6cos(x))2:16−48cos(x)+36cos2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=4,b=6cos(x)
=42−2⋅4⋅6cos(x)+(6cos(x))2
Simplify 42−2⋅4⋅6cos(x)+(6cos(x))2:16−48cos(x)+36cos2(x)
42−2⋅4⋅6cos(x)+(6cos(x))2
42=16
42
42=16=16
2⋅4⋅6cos(x)=48cos(x)
2⋅4⋅6cos(x)
Multiply the numbers: 2⋅4⋅6=48=48cos(x)
(6cos(x))2=36cos2(x)
(6cos(x))2
Apply exponent rule: (a⋅b)n=anbn=62cos2(x)
62=36=36cos2(x)
=16−48cos(x)+36cos2(x)
=16−48cos(x)+36cos2(x)
=16−48cos(x)+36cos2(x)−(1−cos2(x))
−(1−cos2(x)):−1+cos2(x)
−(1−cos2(x))
Distribute parentheses=−(1)−(−cos2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+cos2(x)
=16−48cos(x)+36cos2(x)−1+cos2(x)
Simplify 16−48cos(x)+36cos2(x)−1+cos2(x):37cos2(x)−48cos(x)+15
16−48cos(x)+36cos2(x)−1+cos2(x)
Group like terms=−48cos(x)+36cos2(x)+cos2(x)+16−1
Add similar elements: 36cos2(x)+cos2(x)=37cos2(x)=−48cos(x)+37cos2(x)+16−1
Add/Subtract the numbers: 16−1=15=37cos2(x)−48cos(x)+15
=37cos2(x)−48cos(x)+15
=37cos2(x)−48cos(x)+15
15+37cos2(x)−48cos(x)=0
Solve by substitution
15+37cos2(x)−48cos(x)=0
Let: cos(x)=u15+37u2−48u=0
15+37u2−48u=0:u=3724+21​​,u=3724−21​​
15+37u2−48u=0
Write in the standard form ax2+bx+c=037u2−48u+15=0
Solve with the quadratic formula
37u2−48u+15=0
Quadratic Equation Formula:
For a=37,b=−48,c=15u1,2​=2⋅37−(−48)±(−48)2−4⋅37⋅15​​
u1,2​=2⋅37−(−48)±(−48)2−4⋅37⋅15​​
(−48)2−4⋅37⋅15​=221​
(−48)2−4⋅37⋅15​
Apply exponent rule: (−a)n=an,if n is even(−48)2=482=482−4⋅37⋅15​
Multiply the numbers: 4⋅37⋅15=2220=482−2220​
482=2304=2304−2220​
Subtract the numbers: 2304−2220=84=84​
Prime factorization of 84:22⋅3⋅7
84
84divides by 284=42⋅2=2⋅42
42divides by 242=21⋅2=2⋅2⋅21
21divides by 321=7⋅3=2⋅2⋅3⋅7
2,3,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅7
=22⋅3⋅7
=22⋅3⋅7​
Apply radical rule: =22​3⋅7​
Apply radical rule: 22​=2=23⋅7​
Refine=221​
u1,2​=2⋅37−(−48)±221​​
Separate the solutionsu1​=2⋅37−(−48)+221​​,u2​=2⋅37−(−48)−221​​
u=2⋅37−(−48)+221​​:3724+21​​
2⋅37−(−48)+221​​
Apply rule −(−a)=a=2⋅3748+221​​
Multiply the numbers: 2⋅37=74=7448+221​​
Factor 48+221​:2(24+21​)
48+221​
Rewrite as=2⋅24+221​
Factor out common term 2=2(24+21​)
=742(24+21​)​
Cancel the common factor: 2=3724+21​​
u=2⋅37−(−48)−221​​:3724−21​​
2⋅37−(−48)−221​​
Apply rule −(−a)=a=2⋅3748−221​​
Multiply the numbers: 2⋅37=74=7448−221​​
Factor 48−221​:2(24−21​)
48−221​
Rewrite as=2⋅24−221​
Factor out common term 2=2(24−21​)
=742(24−21​)​
Cancel the common factor: 2=3724−21​​
The solutions to the quadratic equation are:u=3724+21​​,u=3724−21​​
Substitute back u=cos(x)cos(x)=3724+21​​,cos(x)=3724−21​​
cos(x)=3724+21​​,cos(x)=3724−21​​
cos(x)=3724+21​​:x=arccos(3724+21​​)+2πn,x=2π−arccos(3724+21​​)+2πn
cos(x)=3724+21​​
Apply trig inverse properties
cos(x)=3724+21​​
General solutions for cos(x)=3724+21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(3724+21​​)+2πn,x=2π−arccos(3724+21​​)+2πn
x=arccos(3724+21​​)+2πn,x=2π−arccos(3724+21​​)+2πn
cos(x)=3724−21​​:x=arccos(3724−21​​)+2πn,x=2π−arccos(3724−21​​)+2πn
cos(x)=3724−21​​
Apply trig inverse properties
cos(x)=3724−21​​
General solutions for cos(x)=3724−21​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(3724−21​​)+2πn,x=2π−arccos(3724−21​​)+2πn
x=arccos(3724−21​​)+2πn,x=2π−arccos(3724−21​​)+2πn
Combine all the solutionsx=arccos(3724+21​​)+2πn,x=2π−arccos(3724+21​​)+2πn,x=arccos(3724−21​​)+2πn,x=2π−arccos(3724−21​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into cos(x)4​−6=tan(x)
Remove the ones that don't agree with the equation.
Check the solution arccos(3724+21​​)+2πn:False
arccos(3724+21​​)+2πn
Plug in n=1arccos(3724+21​​)+2π1
For cos(x)4​−6=tan(x)plug inx=arccos(3724+21​​)+2π1cos(arccos(3724+21​​)+2π1)4​−6=tan(arccos(3724+21​​)+2π1)
Refine−0.82202…=0.82202…
⇒False
Check the solution 2π−arccos(3724+21​​)+2πn:True
2π−arccos(3724+21​​)+2πn
Plug in n=12π−arccos(3724+21​​)+2π1
For cos(x)4​−6=tan(x)plug inx=2π−arccos(3724+21​​)+2π1cos(2π−arccos(3724+21​​)+2π1)4​−6=tan(2π−arccos(3724+21​​)+2π1)
Refine−0.82202…=−0.82202…
⇒True
Check the solution arccos(3724−21​​)+2πn:True
arccos(3724−21​​)+2πn
Plug in n=1arccos(3724−21​​)+2π1
For cos(x)4​−6=tan(x)plug inx=arccos(3724−21​​)+2π1cos(arccos(3724−21​​)+2π1)4​−6=tan(arccos(3724−21​​)+2π1)
Refine1.62202…=1.62202…
⇒True
Check the solution 2π−arccos(3724−21​​)+2πn:False
2π−arccos(3724−21​​)+2πn
Plug in n=12π−arccos(3724−21​​)+2π1
For cos(x)4​−6=tan(x)plug inx=2π−arccos(3724−21​​)+2π1cos(2π−arccos(3724−21​​)+2π1)4​−6=tan(2π−arccos(3724−21​​)+2π1)
Refine1.62202…=−1.62202…
⇒False
x=2π−arccos(3724+21​​)+2πn,x=arccos(3724−21​​)+2πn
Show solutions in decimal formx=2π−0.68802…+2πn,x=1.01832…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(2a)cot(a+20)=1sqrt(2)sin(3x)-1=0,0,2pi4cos^2(x)=2cos(x)+1(13)/(sin(108))= 9/(sin(x))tan^2(x)+5cos(x)-8=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 4/(cos(x))-6=tan(x) ?

    The general solution for 4/(cos(x))-6=tan(x) is x=2pi-0.68802…+2pin,x=1.01832…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024