Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin^2(θ)=2sin(θ)+3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin2(θ)=2sin(θ)+3

Solution

θ=−0.80489…+2πn,θ=π+0.80489…+2πn
+1
Degrees
θ=−46.11719…∘+360∘n,θ=226.11719…∘+360∘n
Solution steps
3sin2(θ)=2sin(θ)+3
Solve by substitution
3sin2(θ)=2sin(θ)+3
Let: sin(θ)=u3u2=2u+3
3u2=2u+3:u=31+10​​,u=31−10​​
3u2=2u+3
Move 3to the left side
3u2=2u+3
Subtract 3 from both sides3u2−3=2u+3−3
Simplify3u2−3=2u
3u2−3=2u
Move 2uto the left side
3u2−3=2u
Subtract 2u from both sides3u2−3−2u=2u−2u
Simplify3u2−3−2u=0
3u2−3−2u=0
Write in the standard form ax2+bx+c=03u2−2u−3=0
Solve with the quadratic formula
3u2−2u−3=0
Quadratic Equation Formula:
For a=3,b=−2,c=−3u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−3)​​
u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−3)​​
(−2)2−4⋅3(−3)​=210​
(−2)2−4⋅3(−3)​
Apply rule −(−a)=a=(−2)2+4⋅3⋅3​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅3⋅3​
Multiply the numbers: 4⋅3⋅3=36=22+36​
22=4=4+36​
Add the numbers: 4+36=40=40​
Prime factorization of 40:23⋅5
40
40divides by 240=20⋅2=2⋅20
20divides by 220=10⋅2=2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅5
=23⋅5
=23⋅5​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅5​
Apply radical rule: =22​2⋅5​
Apply radical rule: 22​=2=22⋅5​
Refine=210​
u1,2​=2⋅3−(−2)±210​​
Separate the solutionsu1​=2⋅3−(−2)+210​​,u2​=2⋅3−(−2)−210​​
u=2⋅3−(−2)+210​​:31+10​​
2⋅3−(−2)+210​​
Apply rule −(−a)=a=2⋅32+210​​
Multiply the numbers: 2⋅3=6=62+210​​
Factor 2+210​:2(1+10​)
2+210​
Rewrite as=2⋅1+210​
Factor out common term 2=2(1+10​)
=62(1+10​)​
Cancel the common factor: 2=31+10​​
u=2⋅3−(−2)−210​​:31−10​​
2⋅3−(−2)−210​​
Apply rule −(−a)=a=2⋅32−210​​
Multiply the numbers: 2⋅3=6=62−210​​
Factor 2−210​:2(1−10​)
2−210​
Rewrite as=2⋅1−210​
Factor out common term 2=2(1−10​)
=62(1−10​)​
Cancel the common factor: 2=31−10​​
The solutions to the quadratic equation are:u=31+10​​,u=31−10​​
Substitute back u=sin(θ)sin(θ)=31+10​​,sin(θ)=31−10​​
sin(θ)=31+10​​,sin(θ)=31−10​​
sin(θ)=31+10​​:No Solution
sin(θ)=31+10​​
−1≤sin(x)≤1NoSolution
sin(θ)=31−10​​:θ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
sin(θ)=31−10​​
Apply trig inverse properties
sin(θ)=31−10​​
General solutions for sin(θ)=31−10​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
θ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
Combine all the solutionsθ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
Show solutions in decimal formθ=−0.80489…+2πn,θ=π+0.80489…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

(sin(180)}{20}=\frac{sin(a))/8(sin(x)+cos(x))^2=1^2tan(4x)=124csc(B)+5=02cos(pi/5 x)=sqrt(3)

Frequently Asked Questions (FAQ)

  • What is the general solution for 3sin^2(θ)=2sin(θ)+3 ?

    The general solution for 3sin^2(θ)=2sin(θ)+3 is θ=-0.80489…+2pin,θ=pi+0.80489…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024