Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

solvefor x,sin(x)=a-2*q*cos(2x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

solvefor

Solution

x=arcsin(−8q−1+1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1+1+16q(−a+2q)​​)+2πn,x=arcsin(−8q−1−1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1−1+16q(−a+2q)​​)+2πn
Solution steps
sin(x)=a−2qcos(2x)
Subtract a−2qcos(2x) from both sidessin(x)−a+2qcos(2x)=0
Rewrite using trig identities
sin(x)−a+2cos(2x)q
Use the Double Angle identity: cos(2x)=1−2sin2(x)=sin(x)−a+2q(1−2sin2(x))
sin(x)−a+(1−2sin2(x))⋅2q=0
Solve by substitution
sin(x)−a+(1−2sin2(x))⋅2q=0
Let: sin(x)=uu−a+(1−2u2)⋅2q=0
u−a+(1−2u2)⋅2q=0:u=−8q−1+1+16q(−a+2q)​​,u=−8q−1−1+16q(−a+2q)​​;q=0
u−a+(1−2u2)⋅2q=0
Expand u−a+(1−2u2)⋅2q:u−a+2q−4qu2
u−a+(1−2u2)⋅2q
=u−a+2q(1−2u2)
Expand 2q(1−2u2):2q−4qu2
2q(1−2u2)
Apply the distributive law: a(b−c)=ab−aca=2q,b=1,c=2u2=2q⋅1−2q⋅2u2
=2⋅1⋅q−2⋅2qu2
Simplify 2⋅1⋅q−2⋅2qu2:2q−4qu2
2⋅1⋅q−2⋅2qu2
Multiply the numbers: 2⋅1=2=2q−2⋅2qu2
Multiply the numbers: 2⋅2=4=2q−4qu2
=2q−4qu2
=u−a+2q−4qu2
u−a+2q−4qu2=0
Write in the standard form ax2+bx+c=0−4qu2+u−a+2q=0
Solve with the quadratic formula
−4qu2+u−a+2q=0
Quadratic Equation Formula:
For a=−4q,b=1,c=−a+2qu1,2​=2(−4q)−1±12−4(−4q)(−a+2q)​​
u1,2​=2(−4q)−1±12−4(−4q)(−a+2q)​​
Simplify 12−4(−4q)(−a+2q)​:1+16q(−a+2q)​
12−4(−4q)(−a+2q)​
Apply rule 1a=112=1=1−4(−4q)(2q−a)​
Apply rule −(−a)=a=1+4⋅4q(−a+2q)​
Multiply the numbers: 4⋅4=16=1+16q(2q−a)​
u1,2​=2(−4q)−1±1+16q(−a+2q)​​;q=0
Separate the solutionsu1​=2(−4q)−1+1+16q(−a+2q)​​,u2​=2(−4q)−1−1+16q(−a+2q)​​
u=2(−4q)−1+1+16q(−a+2q)​​:−8q−1+1+16q(−a+2q)​​
2(−4q)−1+1+16q(−a+2q)​​
Remove parentheses: (−a)=−a=−2⋅4q−1+1+16q(−a+2q)​​
Multiply the numbers: 2⋅4=8=−8q−1+16q(2q−a)+1​​
Apply the fraction rule: −ba​=−ba​=−8q−1+1+16q(−a+2q)​​
u=2(−4q)−1−1+16q(−a+2q)​​:−8q−1−1+16q(−a+2q)​​
2(−4q)−1−1+16q(−a+2q)​​
Remove parentheses: (−a)=−a=−2⋅4q−1−1+16q(−a+2q)​​
Multiply the numbers: 2⋅4=8=−8q−1−16q(2q−a)+1​​
Apply the fraction rule: −ba​=−ba​=−8q−1−1+16q(−a+2q)​​
The solutions to the quadratic equation are:u=−8q−1+1+16q(−a+2q)​​,u=−8q−1−1+16q(−a+2q)​​;q=0
Substitute back u=sin(x)sin(x)=−8q−1+1+16q(−a+2q)​​,sin(x)=−8q−1−1+16q(−a+2q)​​;q=0
sin(x)=−8q−1+1+16q(−a+2q)​​,sin(x)=−8q−1−1+16q(−a+2q)​​;q=0
sin(x)=−8q−1+1+16q(−a+2q)​​:x=arcsin(−8q−1+1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1+1+16q(−a+2q)​​)+2πn
sin(x)=−8q−1+1+16q(−a+2q)​​
Apply trig inverse properties
sin(x)=−8q−1+1+16q(−a+2q)​​
General solutions for sin(x)=−8q−1+1+16q(−a+2q)​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−8q−1+1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1+1+16q(−a+2q)​​)+2πn
x=arcsin(−8q−1+1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1+1+16q(−a+2q)​​)+2πn
sin(x)=−8q−1−1+16q(−a+2q)​​:x=arcsin(−8q−1−1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1−1+16q(−a+2q)​​)+2πn
sin(x)=−8q−1−1+16q(−a+2q)​​
Apply trig inverse properties
sin(x)=−8q−1−1+16q(−a+2q)​​
General solutions for sin(x)=−8q−1−1+16q(−a+2q)​​sin(x)=a⇒x=arcsin(a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−8q−1−1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1−1+16q(−a+2q)​​)+2πn
x=arcsin(−8q−1−1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1−1+16q(−a+2q)​​)+2πn
Combine all the solutionsx=arcsin(−8q−1+1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1+1+16q(−a+2q)​​)+2πn,x=arcsin(−8q−1−1+16q(−a+2q)​​)+2πn,x=π+arcsin(8q−1−1+16q(−a+2q)​​)+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(2x)-3sin(-x)+2=00=-sin(8x)+sin(6x)3tan(x)sin(x)-sqrt(3)sin(x)=0cot^4(x)-3cot^2(x)+1=0(cos(-30+x))/(cos(30+x))= 1835/726

Frequently Asked Questions (FAQ)

  • What is the general solution for solvefor x,sin(x)=a-2*q*cos(2x) ?

    The general solution for solvefor x,sin(x)=a-2*q*cos(2x) is
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024