Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos(-30+x))/(cos(30+x))= 1835/726

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(30∘+x)cos(−30∘+x)​=7261835​

Solution

x=0.64352…+180∘n
+1
Radians
x=0.64352…+πn
Solution steps
cos(30∘+x)cos(−30∘+x)​=7261835​
Rewrite using trig identities
cos(30∘+x)cos(−30∘+x)​=7261835​
Rewrite using trig identities
cos(30∘+x)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(30∘)cos(x)−sin(30∘)sin(x)
Simplify cos(30∘)cos(x)−sin(30∘)sin(x):23​​cos(x)−21​sin(x)
cos(30∘)cos(x)−sin(30∘)sin(x)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)−sin(30∘)sin(x)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(x)−21​sin(x)
=23​​cos(x)−21​sin(x)
Use the Angle Difference identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(x)cos(30∘)+sin(x)sin(30∘)
Simplify cos(x)cos(30∘)+sin(x)sin(30∘):23​​cos(x)+21​sin(x)
cos(x)cos(30∘)+sin(x)sin(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(x)+sin(30∘)sin(x)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(x)+21​sin(x)
=23​​cos(x)+21​sin(x)
23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​=7261835​
23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​=7261835​
Subtract 7261835​ from both sides23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​−7261835​=0
Simplify 23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​−7261835​:726(3​cos(x)−sin(x))−11093​cos(x)+2561sin(x)​
23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​−7261835​
23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​=3​cos(x)−sin(x)3​cos(x)+sin(x)​
23​​cos(x)−21​sin(x)23​​cos(x)+21​sin(x)​
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
=23​cos(x)​−2sin(x)​23​​cos(x)+21​sin(x)​
23​​cos(x)=23​cos(x)​
23​​cos(x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(x)​
21​sin(x)=2sin(x)​
21​sin(x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅sin(x)​
Multiply: 1⋅sin(x)=sin(x)=2sin(x)​
=23​cos(x)​−2sin(x)​23​cos(x)​+2sin(x)​​
Combine the fractions 23​cos(x)​−2sin(x)​:23​cos(x)−sin(x)​
Apply rule ca​±cb​=ca±b​=23​cos(x)−sin(x)​
=23​cos(x)−sin(x)​23​cos(x)​+2sin(x)​​
Combine the fractions 23​cos(x)​+2sin(x)​:23​cos(x)+sin(x)​
Apply rule ca​±cb​=ca±b​=23​cos(x)+sin(x)​
=23​cos(x)−sin(x)​23​cos(x)+sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=2(3​cos(x)−sin(x))(3​cos(x)+sin(x))⋅2​
Cancel the common factor: 2=3​cos(x)−sin(x)3​cos(x)+sin(x)​
=3​cos(x)−sin(x)3​cos(x)+sin(x)​−7261835​
Least Common Multiplier of 3​cos(x)−sin(x),726:726(3​cos(x)−sin(x))
3​cos(x)−sin(x),726
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 3​cos(x)−sin(x) or 726=726(3​cos(x)−sin(x))
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 726(3​cos(x)−sin(x))
For 3​cos(x)−sin(x)3​cos(x)+sin(x)​:multiply the denominator and numerator by 7263​cos(x)−sin(x)3​cos(x)+sin(x)​=(3​cos(x)−sin(x))⋅726(3​cos(x)+sin(x))⋅726​
For 7261835​:multiply the denominator and numerator by 3​cos(x)−sin(x)7261835​=726(3​cos(x)−sin(x))1835(3​cos(x)−sin(x))​
=(3​cos(x)−sin(x))⋅726(3​cos(x)+sin(x))⋅726​−726(3​cos(x)−sin(x))1835(3​cos(x)−sin(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=726(3​cos(x)−sin(x))(3​cos(x)+sin(x))⋅726−1835(3​cos(x)−sin(x))​
Expand (3​cos(x)+sin(x))⋅726−1835(3​cos(x)−sin(x)):−11093​cos(x)+2561sin(x)
(3​cos(x)+sin(x))⋅726−1835(3​cos(x)−sin(x))
=726(3​cos(x)+sin(x))−1835(3​cos(x)−sin(x))
Expand 726(3​cos(x)+sin(x)):7263​cos(x)+726sin(x)
726(3​cos(x)+sin(x))
Apply the distributive law: a(b+c)=ab+aca=726,b=3​cos(x),c=sin(x)=7263​cos(x)+726sin(x)
=7263​cos(x)+726sin(x)−1835(3​cos(x)−sin(x))
Expand −1835(3​cos(x)−sin(x)):−18353​cos(x)+1835sin(x)
−1835(3​cos(x)−sin(x))
Apply the distributive law: a(b−c)=ab−aca=−1835,b=3​cos(x),c=sin(x)=−18353​cos(x)−(−1835)sin(x)
Apply minus-plus rules−(−a)=a=−18353​cos(x)+1835sin(x)
=7263​cos(x)+726sin(x)−18353​cos(x)+1835sin(x)
Simplify 7263​cos(x)+726sin(x)−18353​cos(x)+1835sin(x):−11093​cos(x)+2561sin(x)
7263​cos(x)+726sin(x)−18353​cos(x)+1835sin(x)
Add similar elements: 7263​cos(x)−18353​cos(x)=−11093​cos(x)=−11093​cos(x)+726sin(x)+1835sin(x)
Add similar elements: 726sin(x)+1835sin(x)=2561sin(x)=−11093​cos(x)+2561sin(x)
=−11093​cos(x)+2561sin(x)
=726(3​cos(x)−sin(x))−11093​cos(x)+2561sin(x)​
726(3​cos(x)−sin(x))−11093​cos(x)+2561sin(x)​=0
g(x)f(x)​=0⇒f(x)=0−11093​cos(x)+2561sin(x)=0
Rewrite using trig identities
−11093​cos(x)+2561sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)−11093​cos(x)+2561sin(x)​=cos(x)0​
Simplify−11093​+cos(x)2561sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)−11093​+2561tan(x)=0
−11093​+2561tan(x)=0
Move 11093​to the right side
−11093​+2561tan(x)=0
Add 11093​ to both sides−11093​+2561tan(x)+11093​=0+11093​
Simplify2561tan(x)=11093​
2561tan(x)=11093​
Divide both sides by 2561
2561tan(x)=11093​
Divide both sides by 256125612561tan(x)​=256111093​​
Simplifytan(x)=256111093​​
tan(x)=256111093​​
Apply trig inverse properties
tan(x)=256111093​​
General solutions for tan(x)=256111093​​tan(x)=a⇒x=arctan(a)+180∘nx=arctan(256111093​​)+180∘n
x=arctan(256111093​​)+180∘n
Show solutions in decimal formx=0.64352…+180∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin^2(x)=3cos(x)-24sin(2x+pi/6)=28cos(θ)=3-4cos(θ)cos(θ)=(sqrt(3))/2 ,sin(θ)sin(θ)=0.788

Frequently Asked Questions (FAQ)

  • What is the general solution for (cos(-30+x))/(cos(30+x))= 1835/726 ?

    The general solution for (cos(-30+x))/(cos(30+x))= 1835/726 is x=0.64352…+180n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024