Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot^2(a)=cos^2(a)+cos(a)cos(a)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot2(a)=cos2(a)+cos(a)cos(a)

Solution

a=2π​+2πn,a=23π​+2πn,a=45π​+2πn,a=47π​+2πn,a=4π​+2πn,a=43π​+2πn
+1
Degrees
a=90∘+360∘n,a=270∘+360∘n,a=225∘+360∘n,a=315∘+360∘n,a=45∘+360∘n,a=135∘+360∘n
Solution steps
cot2(a)=cos2(a)+cos(a)cos(a)
Subtract cos2(a)+cos(a)cos(a) from both sidescot2(a)−2cos2(a)=0
Factor cot2(a)−2cos2(a):(cot(a)+2​cos(a))(cot(a)−2​cos(a))
cot2(a)−2cos2(a)
Rewrite cot2(a)−2cos2(a) as cot2(a)−(2​cos(a))2
cot2(a)−2cos2(a)
Apply radical rule: a=(a​)22=(2​)2=cot2(a)−(2​)2cos2(a)
Apply exponent rule: ambm=(ab)m(2​)2cos2(a)=(2​cos(a))2=cot2(a)−(2​cos(a))2
=cot2(a)−(2​cos(a))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cot2(a)−(2​cos(a))2=(cot(a)+2​cos(a))(cot(a)−2​cos(a))=(cot(a)+2​cos(a))(cot(a)−2​cos(a))
(cot(a)+2​cos(a))(cot(a)−2​cos(a))=0
Solving each part separatelycot(a)+2​cos(a)=0orcot(a)−2​cos(a)=0
cot(a)+2​cos(a)=0:a=2π​+2πn,a=23π​+2πn,a=45π​+2πn,a=47π​+2πn
cot(a)+2​cos(a)=0
Express with sin, cos
cot(a)+cos(a)2​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(a)cos(a)​+cos(a)2​
Simplify sin(a)cos(a)​+cos(a)2​:sin(a)cos(a)+2​cos(a)sin(a)​
sin(a)cos(a)​+cos(a)2​
Convert element to fraction: 2​cos(a)=sin(a)cos(a)2​sin(a)​=sin(a)cos(a)​+sin(a)cos(a)2​sin(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(a)cos(a)+cos(a)2​sin(a)​
=sin(a)cos(a)+2​cos(a)sin(a)​
sin(a)cos(a)+cos(a)sin(a)2​​=0
g(x)f(x)​=0⇒f(x)=0cos(a)+cos(a)sin(a)2​=0
Factor cos(a)+cos(a)sin(a)2​:cos(a)(1+2​sin(a))
cos(a)+cos(a)sin(a)2​
Factor out common term cos(a)=cos(a)(1+sin(a)2​)
cos(a)(1+2​sin(a))=0
Solving each part separatelycos(a)=0or1+2​sin(a)=0
cos(a)=0:a=2π​+2πn,a=23π​+2πn
cos(a)=0
General solutions for cos(a)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=2π​+2πn,a=23π​+2πn
a=2π​+2πn,a=23π​+2πn
1+2​sin(a)=0:a=45π​+2πn,a=47π​+2πn
1+2​sin(a)=0
Move 1to the right side
1+2​sin(a)=0
Subtract 1 from both sides1+2​sin(a)−1=0−1
Simplify2​sin(a)=−1
2​sin(a)=−1
Divide both sides by 2​
2​sin(a)=−1
Divide both sides by 2​2​2​sin(a)​=2​−1​
Simplify
2​2​sin(a)​=2​−1​
Simplify 2​2​sin(a)​:sin(a)
2​2​sin(a)​
Cancel the common factor: 2​=sin(a)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
sin(a)=−22​​
sin(a)=−22​​
sin(a)=−22​​
General solutions for sin(a)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=45π​+2πn,a=47π​+2πn
a=45π​+2πn,a=47π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn,a=45π​+2πn,a=47π​+2πn
cot(a)−2​cos(a)=0:a=2π​+2πn,a=23π​+2πn,a=4π​+2πn,a=43π​+2πn
cot(a)−2​cos(a)=0
Express with sin, cos
cot(a)−cos(a)2​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(a)cos(a)​−cos(a)2​
Simplify sin(a)cos(a)​−cos(a)2​:sin(a)cos(a)−2​cos(a)sin(a)​
sin(a)cos(a)​−cos(a)2​
Convert element to fraction: 2​cos(a)=sin(a)cos(a)2​sin(a)​=sin(a)cos(a)​−sin(a)cos(a)2​sin(a)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(a)cos(a)−cos(a)2​sin(a)​
=sin(a)cos(a)−2​cos(a)sin(a)​
sin(a)cos(a)−cos(a)sin(a)2​​=0
g(x)f(x)​=0⇒f(x)=0cos(a)−cos(a)sin(a)2​=0
Factor cos(a)−cos(a)sin(a)2​:cos(a)(1−2​sin(a))
cos(a)−cos(a)sin(a)2​
Factor out common term cos(a)=cos(a)(1−sin(a)2​)
cos(a)(1−2​sin(a))=0
Solving each part separatelycos(a)=0or1−2​sin(a)=0
cos(a)=0:a=2π​+2πn,a=23π​+2πn
cos(a)=0
General solutions for cos(a)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
a=2π​+2πn,a=23π​+2πn
a=2π​+2πn,a=23π​+2πn
1−2​sin(a)=0:a=4π​+2πn,a=43π​+2πn
1−2​sin(a)=0
Move 1to the right side
1−2​sin(a)=0
Subtract 1 from both sides1−2​sin(a)−1=0−1
Simplify−2​sin(a)=−1
−2​sin(a)=−1
Divide both sides by −2​
−2​sin(a)=−1
Divide both sides by −2​−2​−2​sin(a)​=−2​−1​
Simplify
−2​−2​sin(a)​=−2​−1​
Simplify −2​−2​sin(a)​:sin(a)
−2​−2​sin(a)​
Apply the fraction rule: −b−a​=ba​=2​2​sin(a)​
Cancel the common factor: 2​=sin(a)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
sin(a)=22​​
sin(a)=22​​
sin(a)=22​​
General solutions for sin(a)=22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
a=4π​+2πn,a=43π​+2πn
a=4π​+2πn,a=43π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn,a=4π​+2πn,a=43π​+2πn
Combine all the solutionsa=2π​+2πn,a=23π​+2πn,a=45π​+2πn,a=47π​+2πn,a=4π​+2πn,a=43π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cot(x)*tan(2x)=31*sin(35)=1.33*sin(θ)cos(3A)=1cos(θ)=(-0.68159)cot(x+(5pi)/6)=sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024