Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(x)*tan(2x)=3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(x)⋅tan(2x)=3

Solution

x=0.52359…+πn,x=−0.52359…+πn
+1
Degrees
x=30∘+180∘n,x=−30∘+180∘n
Solution steps
cot(x)tan(2x)=3
Subtract 3 from both sidescot(x)tan(2x)−3=0
Rewrite using trig identities
−3+cot(x)tan(2x)
Use the basic trigonometric identity: cot(x)=tan(x)1​=−3+tan(x)1​tan(2x)
tan(x)1​tan(2x)=tan(x)tan(2x)​
tan(x)1​tan(2x)
Multiply fractions: a⋅cb​=ca⋅b​=tan(x)1⋅tan(2x)​
Multiply: 1⋅tan(2x)=tan(2x)=tan(x)tan(2x)​
=−3+tan(x)tan(2x)​
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=−3+tan(x)1−tan2(x)2tan(x)​​
tan(x)1−tan2(x)2tan(x)​​=1−tan2(x)2​
tan(x)1−tan2(x)2tan(x)​​
Apply the fraction rule: acb​​=c⋅ab​=(1−tan2(x))tan(x)2tan(x)​
Cancel the common factor: tan(x)=1−tan2(x)2​
=−3+1−tan2(x)2​
−3+1−tan2(x)2​=0
Solve by substitution
−3+1−tan2(x)2​=0
Let: tan(x)=u−3+1−u22​=0
−3+1−u22​=0:u=31​​,u=−31​​
−3+1−u22​=0
Multiply both sides by 1−u2
−3+1−u22​=0
Multiply both sides by 1−u2−3(1−u2)+1−u22​(1−u2)=0⋅(1−u2)
Simplify
−3(1−u2)+1−u22​(1−u2)=0⋅(1−u2)
Simplify 1−u22​(1−u2):2
1−u22​(1−u2)
Multiply fractions: a⋅cb​=ca⋅b​=1−u22(1−u2)​
Cancel the common factor: 1−u2=2
Simplify 0⋅(1−u2):0
0⋅(1−u2)
Apply rule 0⋅a=0=0
−3(1−u2)+2=0
−3(1−u2)+2=0
−3(1−u2)+2=0
Solve −3(1−u2)+2=0:u=31​​,u=−31​​
−3(1−u2)+2=0
Move 2to the right side
−3(1−u2)+2=0
Subtract 2 from both sides−3(1−u2)+2−2=0−2
Simplify−3(1−u2)=−2
−3(1−u2)=−2
Divide both sides by −3
−3(1−u2)=−2
Divide both sides by −3−3−3(1−u2)​=−3−2​
Simplify1−u2=32​
1−u2=32​
Move 1to the right side
1−u2=32​
Subtract 1 from both sides1−u2−1=32​−1
Simplify
1−u2−1=32​−1
Simplify 1−u2−1:−u2
1−u2−1
Add similar elements: 1−1=0
=−u2
Simplify 32​−1:−31​
32​−1
Convert element to fraction: 1=31⋅3​=−31⋅3​+32​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−1⋅3+2​
−1⋅3+2=−1
−1⋅3+2
Multiply the numbers: 1⋅3=3=−3+2
Add/Subtract the numbers: −3+2=−1=−1
=3−1​
Apply the fraction rule: b−a​=−ba​=−31​
−u2=−31​
−u2=−31​
−u2=−31​
Divide both sides by −1
−u2=−31​
Divide both sides by −1−1−u2​=−1−31​​
Simplify
−1−u2​=−1−31​​
Simplify −1−u2​:u2
−1−u2​
Apply the fraction rule: −b−a​=ba​=1u2​
Apply rule 1a​=a=u2
Simplify −1−31​​:31​
−1−31​​
Apply the fraction rule: −b−a​=ba​=131​​
Apply the fraction rule: 1a​=a=31​
u2=31​
u2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
u=31​​,u=−31​​
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of −3+1−u22​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u=31​​,u=−31​​
Substitute back u=tan(x)tan(x)=31​​,tan(x)=−31​​
tan(x)=31​​,tan(x)=−31​​
tan(x)=31​​:x=arctan(31​​)+πn
tan(x)=31​​
Apply trig inverse properties
tan(x)=31​​
General solutions for tan(x)=31​​tan(x)=a⇒x=arctan(a)+πnx=arctan(31​​)+πn
x=arctan(31​​)+πn
tan(x)=−31​​:x=arctan(−31​​)+πn
tan(x)=−31​​
Apply trig inverse properties
tan(x)=−31​​
General solutions for tan(x)=−31​​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−31​​)+πn
x=arctan(−31​​)+πn
Combine all the solutionsx=arctan(31​​)+πn,x=arctan(−31​​)+πn
Show solutions in decimal formx=0.52359…+πn,x=−0.52359…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1*sin(35)=1.33*sin(θ)cos(3A)=1cos(θ)=(-0.68159)cot(x+(5pi)/6)=sqrt(3)solvefor θ,y=sin(θ)

Frequently Asked Questions (FAQ)

  • What is the general solution for cot(x)*tan(2x)=3 ?

    The general solution for cot(x)*tan(2x)=3 is x=0.52359…+pin,x=-0.52359…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024