Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

n=(2tan^3(2θ)-1)^{1/2}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

n=(2tan3(2θ)−1)21​

Solution

θ=2arctan(32n2+1​​)​+2πk​
Solution steps
n=(2tan3(2θ)−1)21​
Switch sides(2tan3(2θ)−1)21​=n
Square both sides:2tan3(2θ)−1=n2
(2tan3(2θ)−1)21​=n
((2tan3(2θ)−1)21​)2=n2
Expand ((2tan3(2θ)−1)21​)2:2tan3(2θ)−1
((2tan3(2θ)−1)21​)2
Apply exponent rule: (ab)c=abc=(2tan3(2θ)−1)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2tan3(2θ)−1
2tan3(2θ)−1=n2
2tan3(2θ)−1=n2
Solve 2tan3(2θ)−1=n2:tan(2θ)=32n2+1​​
2tan3(2θ)−1=n2
Move 1to the right side
2tan3(2θ)−1=n2
Add 1 to both sides2tan3(2θ)−1+1=n2+1
Simplify2tan3(2θ)=n2+1
2tan3(2θ)=n2+1
Divide both sides by 2
2tan3(2θ)=n2+1
Divide both sides by 222tan3(2θ)​=2n2​+21​
Simplify
22tan3(2θ)​=2n2​+21​
Simplify 22tan3(2θ)​:tan3(2θ)
22tan3(2θ)​
Divide the numbers: 22​=1=tan3(2θ)
Simplify 2n2​+21​:2n2+1​
2n2​+21​
Apply rule ca​±cb​=ca±b​=2n2+1​
tan3(2θ)=2n2+1​
tan3(2θ)=2n2+1​
tan3(2θ)=2n2+1​
For xn=f(a), n is odd, the solution is x=nf(a)​
tan(2θ)=32n2+1​​
tan(2θ)=32n2+1​​
Verify Solutions:tan(2θ)=32n2+1​​{n≥0}
Check the solutions by plugging them into (2tan3(2θ)−1)21​=n
Remove the ones that don't agree with the equation.
Plugtan(2θ)=32n2+1​​:​2(32n2+1​​)3−1​21​=n⇒n≥0
​2(32n2+1​​)3−1​21​=n
Square both sides:n2=n2
​2(32n2+1​​)3−1​21​=n
​​2(32n2+1​​)3−1​21​​2=n2
Expand ​​2(32n2+1​​)3−1​21​​2:n2
​​2(32n2+1​​)3−1​21​​2
Apply exponent rule: (ab)c=abc=​2(32n2+1​​)3−1​21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2(32n2+1​​)3−1
Expand 2(32n2+1​​)3−1:n2
2(32n2+1​​)3−1
2(32n2+1​​)3=n2+1
2(32n2+1​​)3
(32n2+1​​)3=2n2+1​
(32n2+1​​)3
Apply exponent rule: (ab)c=abc=(2n2+1​)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=2n2+1​
=2⋅2n2+1​
Multiply fractions: a⋅cb​=ca⋅b​=2(n2+1)⋅2​
Cancel the common factor: 2=n2+1
=n2+1−1
1−1=0=n2
=n2
n2=n2
n2=n2
Both sides are equalTrueforalln
Verify Solutions:n<0False,n=0True,n>0True
​2(32n2+1​​)3−1​21​=n
Combine domain interval with solution interval:Trueforalln
Find the function intervals:n<0,n=0,n>0
​2(32n2+1​​)3−1​21​=n
Find the even roots arguments zeroes:
Solve 232n2+1​​3−1=0:n=0
2(32n2+1​​)3−1=0
Factor 2(32n2+1​​)3−1:(231​32n2+1​​−1)(232​(2n2+1​)32​+231​32n2+1​​+1)
2(32n2+1​​)3−1
Rewrite 2(32n2+1​​)3−1 as (231​32n2+1​​)3−13
2(32n2+1​​)3−1
Rewrite 2 as (231​)3=(231​)3(32n2+1​​)3−1
Rewrite 1 as 13=(231​)3(32n2+1​​)3−13
Apply exponent rule: ambm=(ab)m(231​)3(32n2+1​​)3=(231​32n2+1​​)3=(231​32n2+1​​)3−13
=(231​32n2+1​​)3−13
Apply Difference of Cubes Formula: x3−y3=(x−y)(x2+xy+y2)(231​32n2+1​​)3−13=(231​32n2+1​​−1)​(231​)2(32n2+1​​)2+231​32n2+1​​+1​=(231​32n2+1​​−1)​(231​)2(32n2+1​​)2+231​32n2+1​​+1​
Refine=(231​32n2+1​​−1)​232​(32n2+1​​)2+231​32n2+1​​+1​
(32n2+1​​)2=2n2+1​32​
(32n2+1​​)2
Apply exponent rule: (ab)c=abc=(2n2+1​)31​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=(2n2+1​)32​
=(231​32n2+1​​−1)(232​(2n2+1​)32​+231​32n2+1​​+1)
(231​32n2+1​​−1)(232​(2n2+1​)32​+231​32n2+1​​+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0231​32n2+1​​−1=0or232​(2n2+1​)32​+231​32n2+1​​+1=0
Solve 231​32n2+1​​−1=0:n=0
231​32n2+1​​−1=0
Move 1to the right side
231​32n2+1​​−1=0
Add 1 to both sides231​32n2+1​​−1+1=0+1
Simplify231​32n2+1​​=1
231​32n2+1​​=1
Divide both sides by 231​
231​32n2+1​​=1
Divide both sides by 231​231​231​32n2+1​​​=231​1​
Simplify32n2+1​​=231​1​
32n2+1​​=231​1​
Take both sides of the equation to the power of 3:2n2+1​=21​
32n2+1​​=231​1​
(32n2+1​​)3=(231​1​)3
Expand (32n2+1​​)3:2n2+1​
(32n2+1​​)3
Apply exponent rule: (ab)c=abc=(2n2+1​)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=2n2+1​
Expand (231​1​)3:21​
(231​1​)3
Apply exponent rule: (ba​)c=bcac​=(231​)313​
(231​)3:2
Apply exponent rule: (ab)c=abc=231​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=2
=213​
Apply rule 1a=113=1=21​
2n2+1​=21​
2n2+1​=21​
Solve 2n2+1​=21​:n=0
2n2+1​=21​
Multiply both sides by 2
2n2+1​=21​
Multiply both sides by 222(n2+1)​=21⋅2​
Simplify
22(n2+1)​=21⋅2​
Simplify 22(n2+1)​:n2+1
22(n2+1)​
Divide the numbers: 22​=1=n2+1
Simplify 21⋅2​:1
21⋅2​
Multiply the numbers: 1⋅2=2=22​
Apply rule aa​=1=1
n2+1=1
n2+1=1
n2+1=1
Move 1to the right side
n2+1=1
Subtract 1 from both sidesn2+1−1=1−1
Simplifyn2=0
n2=0
Apply rule xn=0⇒x=0
n=0
n=0
Verify Solutions:n=0True
Check the solutions by plugging them into 231​32n2+1​​−1=0
Remove the ones that don't agree with the equation.
Plug in n=0:True
231​3202+1​​−1=0
231​3202+1​​−1=0
231​3202+1​​−1
Apply rule 0a=002=0=231​320+1​​−1
231​320+1​​=1
231​320+1​​
Add the numbers: 0+1=1=231​321​​
Apply exponent rule: ambm=(ab)m231​321​​=(2⋅21​)31​=(2⋅21​)31​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=131​
Apply rule 1a=1=1
=1−1
Subtract the numbers: 1−1=0=0
0=0
True
The solution isn=0
Solve 232​(2n2+1​)32​+231​32n2+1​​+1=0:No Solution for n∈R
232​(2n2+1​)32​+231​32n2+1​​+1=0
Use the following exponent property:amn​=(ma​)n(2n2+1​)32​=(32n2+1​​)2232​(32n2+1​​)2+231​32n2+1​​+1=0
Rewrite the equation with 32n2+1​​=u232​u2+231​u+1=0
Solve 232​u2+231​u+1=0:No Solution for u∈R
232​u2+231​u+1=0
Discriminant 232​u2+231​u+1=0:−3⋅232​
232​u2+231​u+1=0
For a quadratic equation of the form ax2+bx+c=0 the discriminant is b2−4acFor a=232​,b=231​,c=1:(231​)2−4⋅232​⋅1(231​)2−4⋅232​⋅1
Expand (231​)2−4⋅232​⋅1:−3⋅232​
(231​)2−4⋅232​⋅1
(231​)2=232​
(231​)2
Apply exponent rule: (ab)c=abc=231​⋅2
31​⋅2=32​
31​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=31⋅2​
Multiply the numbers: 1⋅2=2=32​
=232​
4⋅232​⋅1=4⋅232​
4⋅232​⋅1
Multiply the numbers: 4⋅1=4=4⋅232​
=232​−4⋅232​
Add similar elements: 232​−4⋅232​=−3⋅232​=−3⋅232​
−3⋅232​
Discriminant cannot be negative for u∈R
The solution isNoSolutionforu∈R
NoSolutionforn∈R
n=0
Verify Solutions:n=0True
Check the solutions by plugging them into 232n2+1​​3−1=0
Remove the ones that don't agree with the equation.
Plug in n=0:True
2(3202+1​​)3−1=0
2(3202+1​​)3−1=0
2(3202+1​​)3−1
Apply rule 0a=002=0=2(320+1​​)3−1
2(320+1​​)3=1
2(320+1​​)3
(320+1​​)3=21​
(320+1​​)3
Apply exponent rule: (ab)c=abc=(20+1​)31​⋅3
31​⋅3=1
31​⋅3
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​
Cancel the common factor: 3=1
=20+1​
Add the numbers: 0+1=1=21​
=2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−1
Subtract the numbers: 1−1=0=0
0=0
True
The solution isn=0
n=0
The intervals are defined around the zeroes:n<0,n=0,n>0
Combine intervals with domainn<0,n=0,n>0
Check the solutions by plugging them into (232n2+1​​3−1)21​=n
Remove the ones that don't agree with the equation.
Plugn<0:(232n2+1​​3−1)21​=n⇒False
The solution isn≥0
The solution istan(2θ)=32n2+1​​{n≥0}
Apply trig inverse properties
tan(2θ)=32n2+1​​
General solutions for tan(2θ)=32n2+1​​tan(x)=a⇒x=arctan(a)+πk2θ=arctan(32n2+1​​)+πk
2θ=arctan(32n2+1​​)+πk
Solve 2θ=arctan(32n2+1​​)+πk:θ=2arctan(32n2+1​​)​+2πk​
2θ=arctan(32n2+1​​)+πk
Divide both sides by 2
2θ=arctan(32n2+1​​)+πk
Divide both sides by 222θ​=2arctan(32n2+1​​)​+2πk​
Simplifyθ=2arctan(32n2+1​​)​+2πk​
θ=2arctan(32n2+1​​)​+2πk​
θ=2arctan(32n2+1​​)​+2πk​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

0=2sin(x+1)+1tan(θ)*10=104cos(x)+tan(45)=0.6sin(5x+8)=cos(9x-16)cos(x)=(sqrt(125))/(sqrt(174))

Frequently Asked Questions (FAQ)

  • What is the general solution for n=(2tan^3(2θ)-1)^{1/2} ?

    The general solution for n=(2tan^3(2θ)-1)^{1/2} is θ=(arctan(\sqrt[3]{(n^2+1)/2}))/(2)+(pik)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024