Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(cos^2(θ/2))=12cos(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(2θ​)1​=12cos(θ)

Solution

θ=1.42478…+2πn,θ=2π−1.42478…+2πn
+1
Degrees
θ=81.63392…∘+360∘n,θ=278.36607…∘+360∘n
Solution steps
cos2(2θ​)1​=12cos(θ)
Subtract 12cos(θ) from both sidescos2(2θ​)1​−12cos(θ)=0
Simplify cos2(2θ​)1​−12cos(θ):cos2(2θ​)1−12cos2(2θ​)cos(θ)​
cos2(2θ​)1​−12cos(θ)
Convert element to fraction: 12cos(θ)=cos2(2θ​)12cos(θ)cos2(2θ​)​=cos2(2θ​)1​−cos2(2θ​)12cos(θ)cos2(2θ​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(2θ​)1−12cos(θ)cos2(2θ​)​
cos2(2θ​)1−12cos2(2θ​)cos(θ)​=0
g(x)f(x)​=0⇒f(x)=01−12cos2(2θ​)cos(θ)=0
Rewrite using trig identities
1−12cos2(2θ​)cos(θ)
Use the following identity:cos2(θ)=21+cos(2θ)​
Use the Double Angle identitycos(2θ)=2cos2(θ)−1
Switch sides2cos2(θ)−1=cos(2θ)
Add 1 to both sides2sin2(θ)=1+cos(2θ)
Divide both sides by 2cos2(θ)=21+cos(2θ)​
=1−12⋅21+cos(2⋅2θ​)​cos(θ)
12⋅21+cos(2⋅2θ​)​cos(θ)=6cos(θ)(cos(θ)+1)
12⋅21+cos(2⋅2θ​)​cos(θ)
21+cos(2⋅2θ​)​=21+cos(θ)​
21+cos(2⋅2θ​)​
Multiply 2⋅2θ​:θ
2⋅2θ​
Multiply fractions: a⋅cb​=ca⋅b​=2θ⋅2​
Cancel the common factor: 2=θ
=21+cos(θ)​
=12⋅2cos(θ)+1​cos(θ)
Multiply fractions: a⋅cb​=ca⋅b​=2(1+cos(θ))⋅12cos(θ)​
Divide the numbers: 212​=6=6cos(θ)(cos(θ)+1)
=1−6cos(θ)(cos(θ)+1)
1−(1+cos(θ))⋅6cos(θ)=0
Solve by substitution
1−(1+cos(θ))⋅6cos(θ)=0
Let: cos(θ)=u1−(1+u)⋅6u=0
1−(1+u)⋅6u=0:u=−63+15​​,u=615​−3​
1−(1+u)⋅6u=0
Expand 1−(1+u)⋅6u:1−6u−6u2
1−(1+u)⋅6u
=1−6u(1+u)
Expand −6u(1+u):−6u−6u2
−6u(1+u)
Apply the distributive law: a(b+c)=ab+aca=−6u,b=1,c=u=−6u⋅1+(−6u)u
Apply minus-plus rules+(−a)=−a=−6⋅1⋅u−6uu
Simplify −6⋅1⋅u−6uu:−6u−6u2
−6⋅1⋅u−6uu
6⋅1⋅u=6u
6⋅1⋅u
Multiply the numbers: 6⋅1=6=6u
6uu=6u2
6uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=6u1+1
Add the numbers: 1+1=2=6u2
=−6u−6u2
=−6u−6u2
=1−6u−6u2
1−6u−6u2=0
Write in the standard form ax2+bx+c=0−6u2−6u+1=0
Solve with the quadratic formula
−6u2−6u+1=0
Quadratic Equation Formula:
For a=−6,b=−6,c=1u1,2​=2(−6)−(−6)±(−6)2−4(−6)⋅1​​
u1,2​=2(−6)−(−6)±(−6)2−4(−6)⋅1​​
(−6)2−4(−6)⋅1​=215​
(−6)2−4(−6)⋅1​
Apply rule −(−a)=a=(−6)2+4⋅6⋅1​
Apply exponent rule: (−a)n=an,if n is even(−6)2=62=62+4⋅6⋅1​
Multiply the numbers: 4⋅6⋅1=24=62+24​
62=36=36+24​
Add the numbers: 36+24=60=60​
Prime factorization of 60:22⋅3⋅5
60
60divides by 260=30⋅2=2⋅30
30divides by 230=15⋅2=2⋅2⋅15
15divides by 315=5⋅3=2⋅2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅5
=22⋅3⋅5
=22⋅3⋅5​
Apply radical rule: =22​3⋅5​
Apply radical rule: 22​=2=23⋅5​
Refine=215​
u1,2​=2(−6)−(−6)±215​​
Separate the solutionsu1​=2(−6)−(−6)+215​​,u2​=2(−6)−(−6)−215​​
u=2(−6)−(−6)+215​​:−63+15​​
2(−6)−(−6)+215​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅66+215​​
Multiply the numbers: 2⋅6=12=−126+215​​
Apply the fraction rule: −ba​=−ba​=−126+215​​
Cancel 126+215​​:63+15​​
126+215​​
Factor 6+215​:2(3+15​)
6+215​
Rewrite as=2⋅3+215​
Factor out common term 2=2(3+15​)
=122(3+15​)​
Cancel the common factor: 2=63+15​​
=−63+15​​
u=2(−6)−(−6)−215​​:615​−3​
2(−6)−(−6)−215​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅66−215​​
Multiply the numbers: 2⋅6=12=−126−215​​
Apply the fraction rule: −b−a​=ba​6−215​=−(215​−6)=12215​−6​
Factor 215​−6:2(15​−3)
215​−6
Rewrite as=215​−2⋅3
Factor out common term 2=2(15​−3)
=122(15​−3)​
Cancel the common factor: 2=615​−3​
The solutions to the quadratic equation are:u=−63+15​​,u=615​−3​
Substitute back u=cos(θ)cos(θ)=−63+15​​,cos(θ)=615​−3​
cos(θ)=−63+15​​,cos(θ)=615​−3​
cos(θ)=−63+15​​:No Solution
cos(θ)=−63+15​​
−1≤cos(x)≤1NoSolution
cos(θ)=615​−3​:θ=arccos(615​−3​)+2πn,θ=2π−arccos(615​−3​)+2πn
cos(θ)=615​−3​
Apply trig inverse properties
cos(θ)=615​−3​
General solutions for cos(θ)=615​−3​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(615​−3​)+2πn,θ=2π−arccos(615​−3​)+2πn
θ=arccos(615​−3​)+2πn,θ=2π−arccos(615​−3​)+2πn
Combine all the solutionsθ=arccos(615​−3​)+2πn,θ=2π−arccos(615​−3​)+2πn
Show solutions in decimal formθ=1.42478…+2πn,θ=2π−1.42478…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(3)cos(x)-sin(x)=sqrt(2)cos(x)=(sqrt(34))/(sqrt(70))-3sin(t)+4cos(t)=0cos(θ)= 8/6tan(x)=(-2sqrt(2))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for 1/(cos^2(θ/2))=12cos(θ) ?

    The general solution for 1/(cos^2(θ/2))=12cos(θ) is θ=1.42478…+2pin,θ=2pi-1.42478…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024