Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)= 1/(cot(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)=cot(x)1​

Solution

x=0.66623…+2πn,x=π−0.66623…+2πn
+1
Degrees
x=38.17270…∘+360∘n,x=141.82729…∘+360∘n
Solution steps
cos(x)=cot(x)1​
Subtract cot(x)1​ from both sidescos(x)−cot(x)1​=0
Simplify cos(x)−cot(x)1​:cot(x)cos(x)cot(x)−1​
cos(x)−cot(x)1​
Convert element to fraction: cos(x)=cot(x)cos(x)cot(x)​=cot(x)cos(x)cot(x)​−cot(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cot(x)cos(x)cot(x)−1​
cot(x)cos(x)cot(x)−1​=0
g(x)f(x)​=0⇒f(x)=0cos(x)cot(x)−1=0
Rewrite using trig identities
−1+cos(x)cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−1+cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=−1+sin(x)cos2(x)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−1+sin(x)1−sin2(x)​
−1+sin(x)1−sin2(x)​=0
Solve by substitution
−1+sin(x)1−sin2(x)​=0
Let: sin(x)=u−1+u1−u2​=0
−1+u1−u2​=0:u=−21+5​​,u=25​−1​
−1+u1−u2​=0
Multiply both sides by u
−1+u1−u2​=0
Multiply both sides by u−1⋅u+u1−u2​u=0⋅u
Simplify
−1⋅u+u1−u2​u=0⋅u
Simplify −1⋅u:−u
−1⋅u
Multiply: 1⋅u=u=−u
Simplify u1−u2​u:1−u2
u1−u2​u
Multiply fractions: a⋅cb​=ca⋅b​=u(1−u2)u​
Cancel the common factor: u=1−u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−u+1−u2=0
−u+1−u2=0
−u+1−u2=0
Solve −u+1−u2=0:u=−21+5​​,u=25​−1​
−u+1−u2=0
Write in the standard form ax2+bx+c=0−u2−u+1=0
Solve with the quadratic formula
−u2−u+1=0
Quadratic Equation Formula:
For a=−1,b=−1,c=1u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅1​​
(−1)2−4(−1)⋅1​=5​
(−1)2−4(−1)⋅1​
Apply rule −(−a)=a=(−1)2+4⋅1⋅1​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=1+4​
Add the numbers: 1+4=5=5​
u1,2​=2(−1)−(−1)±5​​
Separate the solutionsu1​=2(−1)−(−1)+5​​,u2​=2(−1)−(−1)−5​​
u=2(−1)−(−1)+5​​:−21+5​​
2(−1)−(−1)+5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11+5​​
Multiply the numbers: 2⋅1=2=−21+5​​
Apply the fraction rule: −ba​=−ba​=−21+5​​
u=2(−1)−(−1)−5​​:25​−1​
2(−1)−(−1)−5​​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅11−5​​
Multiply the numbers: 2⋅1=2=−21−5​​
Apply the fraction rule: −b−a​=ba​1−5​=−(5​−1)=25​−1​
The solutions to the quadratic equation are:u=−21+5​​,u=25​−1​
u=−21+5​​,u=25​−1​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −1+u1−u2​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−21+5​​,u=25​−1​
Substitute back u=sin(x)sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​,sin(x)=25​−1​
sin(x)=−21+5​​:No Solution
sin(x)=−21+5​​
−1≤sin(x)≤1NoSolution
sin(x)=25​−1​:x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
sin(x)=25​−1​
Apply trig inverse properties
sin(x)=25​−1​
General solutions for sin(x)=25​−1​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
x=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Combine all the solutionsx=arcsin(25​−1​)+2πn,x=π−arcsin(25​−1​)+2πn
Show solutions in decimal formx=0.66623…+2πn,x=π−0.66623…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2-3cos(θ)=0(12)/(sin(120))= 5/(sin(x))3-tan^2(b)=0tan(2θ)=-2/5cos(2x)-3cos(x)=-2

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)= 1/(cot(x)) ?

    The general solution for cos(x)= 1/(cot(x)) is x=0.66623…+2pin,x=pi-0.66623…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024