Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(2x)=cos(2x+30)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(2x)=cos(2x+30∘)

Solution

x=20.33347…​+2180∘n​
+1
Radians
x=20.33347…​+2π​n
Solution steps
2sin(2x)=cos(2x+30∘)
Rewrite using trig identities
2sin(2x)=cos(2x+30∘)
Rewrite using trig identities
cos(2x+30∘)
Use the Angle Sum identity: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(30∘)−sin(2x)sin(30∘)
Simplify cos(2x)cos(30∘)−sin(2x)sin(30∘):23​​cos(2x)−21​sin(2x)
cos(2x)cos(30∘)−sin(2x)sin(30∘)
Simplify cos(30∘):23​​
cos(30∘)
Use the following trivial identity:cos(30∘)=23​​
cos(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​cos(2x)−sin(30∘)sin(2x)
Simplify sin(30∘):21​
sin(30∘)
Use the following trivial identity:sin(30∘)=21​
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=23​​cos(2x)−21​sin(2x)
=23​​cos(2x)−21​sin(2x)
2sin(2x)=23​​cos(2x)−21​sin(2x)
2sin(2x)=23​​cos(2x)−21​sin(2x)
Subtract 23​​cos(2x)−21​sin(2x) from both sides25​sin(2x)−23​​cos(2x)=0
Simplify 25​sin(2x)−23​​cos(2x):25sin(2x)−3​cos(2x)​
25​sin(2x)−23​​cos(2x)
Multiply 25​sin(2x):25sin(2x)​
25​sin(2x)
Multiply fractions: a⋅cb​=ca⋅b​=25sin(2x)​
=25sin(2x)​−23​​cos(2x)
Multiply 23​​cos(2x):23​cos(2x)​
23​​cos(2x)
Multiply fractions: a⋅cb​=ca⋅b​=23​cos(2x)​
=25sin(2x)​−23​cos(2x)​
Apply rule ca​±cb​=ca±b​=25sin(2x)−3​cos(2x)​
25sin(2x)−3​cos(2x)​=0
g(x)f(x)​=0⇒f(x)=05sin(2x)−3​cos(2x)=0
Rewrite using trig identities
5sin(2x)−3​cos(2x)=0
Divide both sides by cos(2x),cos(2x)=0cos(2x)5sin(2x)−3​cos(2x)​=cos(2x)0​
Simplifycos(2x)5sin(2x)​−3​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)5tan(2x)−3​=0
5tan(2x)−3​=0
Move 3​to the right side
5tan(2x)−3​=0
Add 3​ to both sides5tan(2x)−3​+3​=0+3​
Simplify5tan(2x)=3​
5tan(2x)=3​
Divide both sides by 5
5tan(2x)=3​
Divide both sides by 555tan(2x)​=53​​
Simplifytan(2x)=53​​
tan(2x)=53​​
Apply trig inverse properties
tan(2x)=53​​
General solutions for tan(2x)=53​​tan(x)=a⇒x=arctan(a)+180∘n2x=arctan(53​​)+180∘n
2x=arctan(53​​)+180∘n
Solve 2x=arctan(53​​)+180∘n:x=2arctan(53​​)​+2180∘n​
2x=arctan(53​​)+180∘n
Divide both sides by 2
2x=arctan(53​​)+180∘n
Divide both sides by 222x​=2arctan(53​​)​+2180∘n​
Simplifyx=2arctan(53​​)​+2180∘n​
x=2arctan(53​​)​+2180∘n​
x=2arctan(53​​)​+2180∘n​
Show solutions in decimal formx=20.33347…​+2180∘n​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)= 15/25tan(φ)=3sin(x)= 1/(sqrt(2)),0<= x<= 2pi27^2=56^2+35^2-(2*56*35*cos(x))solvefor x,sin^2(x)-sin(x)-2=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 2sin(2x)=cos(2x+30) ?

    The general solution for 2sin(2x)=cos(2x+30) is x=(0.33347…)/2+(180n)/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024