Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(11x+1)=tan(6x+4)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(11x+1)=tan(6x+4)

Solution

x=−175​+34π​+172πn​,x=−175​+343π​+172πn​
+1
Degrees
x=−11.55758…∘+21.17647…∘n,x=−0.96934…∘+21.17647…∘n
Solution steps
cot(11x+1)=tan(6x+4)
Subtract tan(6x+4) from both sidescot(11x+1)−tan(6x+4)=0
Express with sin, cos
cot(1+11x)−tan(4+6x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(1+11x)cos(1+11x)​−tan(4+6x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=sin(1+11x)cos(1+11x)​−cos(4+6x)sin(4+6x)​
Simplify sin(1+11x)cos(1+11x)​−cos(4+6x)sin(4+6x)​:sin(11x+1)cos(6x+4)cos(1+11x)cos(6x+4)−sin(4+6x)sin(11x+1)​
sin(1+11x)cos(1+11x)​−cos(4+6x)sin(4+6x)​
Least Common Multiplier of sin(1+11x),cos(4+6x):sin(11x+1)cos(6x+4)
sin(1+11x),cos(4+6x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(1+11x) or cos(4+6x)=sin(11x+1)cos(6x+4)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(11x+1)cos(6x+4)
For sin(1+11x)cos(1+11x)​:multiply the denominator and numerator by cos(6x+4)sin(1+11x)cos(1+11x)​=sin(1+11x)cos(6x+4)cos(1+11x)cos(6x+4)​
For cos(4+6x)sin(4+6x)​:multiply the denominator and numerator by sin(11x+1)cos(4+6x)sin(4+6x)​=cos(4+6x)sin(11x+1)sin(4+6x)sin(11x+1)​
=sin(1+11x)cos(6x+4)cos(1+11x)cos(6x+4)​−cos(4+6x)sin(11x+1)sin(4+6x)sin(11x+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(11x+1)cos(6x+4)cos(1+11x)cos(6x+4)−sin(4+6x)sin(11x+1)​
=sin(11x+1)cos(6x+4)cos(1+11x)cos(6x+4)−sin(4+6x)sin(11x+1)​
cos(4+6x)sin(1+11x)cos(1+11x)cos(4+6x)−sin(1+11x)sin(4+6x)​=0
g(x)f(x)​=0⇒f(x)=0cos(1+11x)cos(4+6x)−sin(1+11x)sin(4+6x)=0
Rewrite using trig identities
cos(1+11x)cos(4+6x)−sin(1+11x)sin(4+6x)
Use the Angle Sum identity: cos(s)cos(t)−sin(s)sin(t)=cos(s+t)=cos(1+11x+4+6x)
cos(1+11x+4+6x)=0
General solutions for cos(1+11x+4+6x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
1+11x+4+6x=2π​+2πn,1+11x+4+6x=23π​+2πn
1+11x+4+6x=2π​+2πn,1+11x+4+6x=23π​+2πn
Solve 1+11x+4+6x=2π​+2πn:x=−175​+34π​+172πn​
1+11x+4+6x=2π​+2πn
Group like terms11x+6x+1+4=2π​+2πn
Add similar elements: 11x+6x=17x17x+1+4=2π​+2πn
Add the numbers: 1+4=517x+5=2π​+2πn
Move 5to the right side
17x+5=2π​+2πn
Subtract 5 from both sides17x+5−5=2π​+2πn−5
Simplify17x=2π​+2πn−5
17x=2π​+2πn−5
Divide both sides by 17
17x=2π​+2πn−5
Divide both sides by 171717x​=172π​​+172πn​−175​
Simplify
1717x​=172π​​+172πn​−175​
Simplify 1717x​:x
1717x​
Divide the numbers: 1717​=1=x
Simplify 172π​​+172πn​−175​:−175​+34π​+172πn​
172π​​+172πn​−175​
Group like terms=−175​+172πn​+172π​​
172π​​=34π​
172π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅17π​
Multiply the numbers: 2⋅17=34=34π​
=−175​+172πn​+34π​
Group like terms=−175​+34π​+172πn​
x=−175​+34π​+172πn​
x=−175​+34π​+172πn​
x=−175​+34π​+172πn​
Solve 1+11x+4+6x=23π​+2πn:x=−175​+343π​+172πn​
1+11x+4+6x=23π​+2πn
Group like terms11x+6x+1+4=23π​+2πn
Add similar elements: 11x+6x=17x17x+1+4=23π​+2πn
Add the numbers: 1+4=517x+5=23π​+2πn
Move 5to the right side
17x+5=23π​+2πn
Subtract 5 from both sides17x+5−5=23π​+2πn−5
Simplify17x=23π​+2πn−5
17x=23π​+2πn−5
Divide both sides by 17
17x=23π​+2πn−5
Divide both sides by 171717x​=1723π​​+172πn​−175​
Simplify
1717x​=1723π​​+172πn​−175​
Simplify 1717x​:x
1717x​
Divide the numbers: 1717​=1=x
Simplify 1723π​​+172πn​−175​:−175​+343π​+172πn​
1723π​​+172πn​−175​
Group like terms=−175​+172πn​+1723π​​
1723π​​=343π​
1723π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅173π​
Multiply the numbers: 2⋅17=34=343π​
=−175​+172πn​+343π​
Group like terms=−175​+343π​+172πn​
x=−175​+343π​+172πn​
x=−175​+343π​+172πn​
x=−175​+343π​+172πn​
x=−175​+34π​+172πn​,x=−175​+343π​+172πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(2x)=cos(2x+30)tan(θ)= 15/25tan(φ)=3sin(x)= 1/(sqrt(2)),0<= x<= 2pi27^2=56^2+35^2-(2*56*35*cos(x))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024