Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2.68)/(sin(126))=(1.2)/(sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(126∘)2.68​=sin(x)1.2​

Solution

x=0.37067…+360∘n,x=180∘−0.37067…+360∘n
+1
Radians
x=0.37067…+2πn,x=π−0.37067…+2πn
Solution steps
sin(126∘)2.68​=sin(x)1.2​
sin(126∘)=45​+1​
sin(126∘)
Rewrite using trig identities:cos(36∘)
sin(126∘)
Use the following identity: sin(x)=cos(90∘−x)=cos(90∘−126∘)
Simplify:90∘−126∘=−36∘
90∘−126∘
Least Common Multiplier of 2,10:10
2,10
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 10:2⋅5
10
10divides by 210=5⋅2=2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅5
Multiply each factor the greatest number of times it occurs in either 2 or 10=2⋅5
Multiply the numbers: 2⋅5=10=10
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 10
For 90∘:multiply the denominator and numerator by 590∘=2⋅5180∘5​=90∘
=90∘−126∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=10180∘5−1260∘​
Add similar elements: 900∘−1260∘=−360∘=10−360∘​
Apply the fraction rule: b−a​=−ba​=−36∘
Cancel the common factor: 2=−36∘
=cos(−36∘)
Use the following property: cos(−x)=cos(x)cos(−36∘)=cos(36∘)=cos(36∘)
=cos(36∘)
Rewrite using trig identities:45​+1​
cos(36∘)
Show that: cos(36∘)−sin(18∘)=21​
Use the following product to sum identity: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Show that: cos(36∘)+sin(18∘)=45​​
Use the factorization rule: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Refine(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Show that: 2cos(36∘)sin(18∘)=21​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Divide both sides by sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Use the following identity: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Divide both sides by cos(18∘)1=4sin(18∘)cos(36∘)
Divide both sides by 221​=2sin(18∘)cos(36∘)
Substitute 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Substitute cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Refine(cos(36∘)+sin(18∘))2−41​=1
Add 41​ to both sides(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Refine(cos(36∘)+sin(18∘))2=45​
Take the square root of both sidescos(36∘)+sin(18∘)=±45​​
cos(36∘)cannot be negativesin(18∘)cannot be negativecos(36∘)+sin(18∘)=45​​
Add the following equationscos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Refinecos(36∘)=45​+1​
=45​+1​
=45​+1​
45​+1​2.68​=sin(x)1.2​
Cross multiply
45​+1​2.68​=sin(x)1.2​
Apply fraction cross multiply: if ba​=dc​ then a⋅d=b⋅c2.68sin(x)=45​+1​⋅1.2
Simplify 45​+1​⋅1.2:41.2(5​+1)​
45​+1​⋅1.2
Multiply fractions: a⋅cb​=ca⋅b​=4(5​+1)⋅1.2​
2.68sin(x)=41.2(5​+1)​
2.68sin(x)=41.2(5​+1)​
Multiply both sides by 100
2.68sin(x)=41.2(5​+1)​
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1002.68sin(x)⋅100=41.2(5​+1)​⋅100
Refine268sin(x)=30(1+5​)
268sin(x)=30(1+5​)
Divide both sides by 268
268sin(x)=30(1+5​)
Divide both sides by 268268268sin(x)​=26830(1+5​)​
Simplifysin(x)=13415(1+5​)​
sin(x)=13415(1+5​)​
Verify Solutions
Find undefined (singularity) points:sin(x)=0
Take the denominator(s) of sin(x)1.2​ and compare to zero
sin(x)=0
The following points are undefinedsin(x)=0
Combine undefined points with solutions:
sin(x)=13415(1+5​)​
Apply trig inverse properties
sin(x)=13415(1+5​)​
General solutions for sin(x)=13415(1+5​)​sin(x)=a⇒x=arcsin(a)+360∘n,x=180∘−arcsin(a)+360∘nx=arcsin(13415(1+5​)​)+360∘n,x=180∘−arcsin(13415(1+5​)​)+360∘n
x=arcsin(13415(1+5​)​)+360∘n,x=180∘−arcsin(13415(1+5​)​)+360∘n
Show solutions in decimal formx=0.37067…+360∘n,x=180∘−0.37067…+360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3csc^2(x)-5csc(x)-2=0((sin(5x)))/((-1cos(5x)))=0sin(x)=cos(40)5cos(x)+sqrt(2)=3cos(x),0<= x<= 2pi2tan(2x+10)=-5.5

Frequently Asked Questions (FAQ)

  • What is the general solution for (2.68)/(sin(126))=(1.2)/(sin(x)) ?

    The general solution for (2.68)/(sin(126))=(1.2)/(sin(x)) is x=0.37067…+360n,x=180-0.37067…+360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024