Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(t)+9/49 =1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(t)+499​=1

Solution

t=0.44291…+2πn,t=2π−0.44291…+2πn,t=2.69868…+2πn,t=−2.69868…+2πn
+1
Degrees
t=25.37693…∘+360∘n,t=334.62306…∘+360∘n,t=154.62306…∘+360∘n,t=−154.62306…∘+360∘n
Solution steps
cos2(t)+499​=1
Solve by substitution
cos2(t)+499​=1
Let: cos(t)=uu2+499​=1
u2+499​=1:u=7210​​,u=−7210​​
u2+499​=1
Move 499​to the right side
u2+499​=1
Subtract 499​ from both sidesu2+499​−499​=1−499​
Simplifyu2=1−499​
u2=1−499​
Simplify 1−499​:4940​
1−499​
Convert element to fraction: 1=491⋅49​=491⋅49​−499​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=491⋅49−9​
1⋅49−9=40
1⋅49−9
Multiply the numbers: 1⋅49=49=49−9
Subtract the numbers: 49−9=40=40
=4940​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=4940​​,u=−4940​​
4940​​=7210​​
4940​​
Apply radical rule: assuming a≥0,b≥0=49​40​​
49​=7
49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
=740​​
40​=210​
40​
Prime factorization of 40:23⋅5
40
40divides by 240=20⋅2=2⋅20
20divides by 220=10⋅2=2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅5
=23⋅5
=23⋅5​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅5​
Apply radical rule: =22​2⋅5​
Apply radical rule: 22​=2=22⋅5​
Refine=210​
=7210​​
−4940​​=−7210​​
−4940​​
Simplify 4940​​:7210​​
4940​​
Apply radical rule: assuming a≥0,b≥0=49​40​​
49​=7
49​
Factor the number: 49=72=72​
Apply radical rule: 72​=7=7
=740​​
40​=210​
40​
Prime factorization of 40:23⋅5
40
40divides by 240=20⋅2=2⋅20
20divides by 220=10⋅2=2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅5
=23⋅5
=23⋅5​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅5​
Apply radical rule: =22​2⋅5​
Apply radical rule: 22​=2=22⋅5​
Refine=210​
=7210​​
=−7210​​
u=7210​​,u=−7210​​
Substitute back u=cos(t)cos(t)=7210​​,cos(t)=−7210​​
cos(t)=7210​​,cos(t)=−7210​​
cos(t)=7210​​:t=arccos(7210​​)+2πn,t=2π−arccos(7210​​)+2πn
cos(t)=7210​​
Apply trig inverse properties
cos(t)=7210​​
General solutions for cos(t)=7210​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnt=arccos(7210​​)+2πn,t=2π−arccos(7210​​)+2πn
t=arccos(7210​​)+2πn,t=2π−arccos(7210​​)+2πn
cos(t)=−7210​​:t=arccos(−7210​​)+2πn,t=−arccos(−7210​​)+2πn
cos(t)=−7210​​
Apply trig inverse properties
cos(t)=−7210​​
General solutions for cos(t)=−7210​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnt=arccos(−7210​​)+2πn,t=−arccos(−7210​​)+2πn
t=arccos(−7210​​)+2πn,t=−arccos(−7210​​)+2πn
Combine all the solutionst=arccos(7210​​)+2πn,t=2π−arccos(7210​​)+2πn,t=arccos(−7210​​)+2πn,t=−arccos(−7210​​)+2πn
Show solutions in decimal formt=0.44291…+2πn,t=2π−0.44291…+2πn,t=2.69868…+2πn,t=−2.69868…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4tan(x)+cot(x)=5prove cos(pi/3+x)=sin(30-x)2cos^2(x)+cos(x)=cos(2x)cos(θ)= 2/5 ,cot(θ)<0solvefor b,s(t)=tan(bt^2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024