Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(tan(3x))/(tan(2x))=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x)tan(3x)​=1

Solution

NoSolutionforx∈R
Solution steps
tan(2x)tan(3x)​=1
Subtract 1 from both sidestan(2x)tan(3x)​−1=0
Simplify tan(2x)tan(3x)​−1:tan(2x)tan(3x)−tan(2x)​
tan(2x)tan(3x)​−1
Convert element to fraction: 1=tan(2x)1tan(2x)​=tan(2x)tan(3x)​−tan(2x)1⋅tan(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=tan(2x)tan(3x)−1⋅tan(2x)​
Multiply: 1⋅tan(2x)=tan(2x)=tan(2x)tan(3x)−tan(2x)​
tan(2x)tan(3x)−tan(2x)​=0
g(x)f(x)​=0⇒f(x)=0tan(3x)−tan(2x)=0
Express with sin, cos
−tan(2x)+tan(3x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(2x)sin(2x)​+tan(3x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=−cos(2x)sin(2x)​+cos(3x)sin(3x)​
Simplify −cos(2x)sin(2x)​+cos(3x)sin(3x)​:cos(2x)cos(3x)−sin(2x)cos(3x)+sin(3x)cos(2x)​
−cos(2x)sin(2x)​+cos(3x)sin(3x)​
Least Common Multiplier of cos(2x),cos(3x):cos(2x)cos(3x)
cos(2x),cos(3x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(2x) or cos(3x)=cos(2x)cos(3x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(2x)cos(3x)
For cos(2x)sin(2x)​:multiply the denominator and numerator by cos(3x)cos(2x)sin(2x)​=cos(2x)cos(3x)sin(2x)cos(3x)​
For cos(3x)sin(3x)​:multiply the denominator and numerator by cos(2x)cos(3x)sin(3x)​=cos(3x)cos(2x)sin(3x)cos(2x)​
=−cos(2x)cos(3x)sin(2x)cos(3x)​+cos(3x)cos(2x)sin(3x)cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)cos(3x)−sin(2x)cos(3x)+sin(3x)cos(2x)​
=cos(2x)cos(3x)−sin(2x)cos(3x)+sin(3x)cos(2x)​
cos(2x)cos(3x)cos(2x)sin(3x)−cos(3x)sin(2x)​=0
g(x)f(x)​=0⇒f(x)=0cos(2x)sin(3x)−cos(3x)sin(2x)=0
Rewrite using trig identities
cos(2x)sin(3x)−cos(3x)sin(2x)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(3x−2x)
sin(3x−2x)=0
General solutions for sin(3x−2x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3x−2x=0+2πn,3x−2x=π+2πn
3x−2x=0+2πn,3x−2x=π+2πn
Solve 3x−2x=0+2πn:x=2πn
3x−2x=0+2πn
Add similar elements: 3x−2x=xx=0+2πn
0+2πn=2πnx=2πn
Solve 3x−2x=π+2πn:x=π+2πn
3x−2x=π+2πn
Add similar elements: 3x−2x=xx=π+2πn
x=2πn,x=π+2πn
Since the equation is undefined for:2πn,π+2πnNoSolutionforx∈R

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6cot(x)=5-tan(x)sin(X)=(sqrt(2))/2cos^4(x)=1-sin^4(x)sec^2(x)+cot^2(x)=csc^2(x)((sin^2(x)))/((1-cos(x)))=1.23

Frequently Asked Questions (FAQ)

  • What is the general solution for (tan(3x))/(tan(2x))=1 ?

    The general solution for (tan(3x))/(tan(2x))=1 is No Solution for x\in\mathbb{R}
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024