Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^4(x)=1-sin^4(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos4(x)=1−sin4(x)

Solution

x=2πn,x=π+2πn,x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=90∘+360∘n,x=270∘+360∘n
Solution steps
cos4(x)=1−sin4(x)
Subtract 1−sin4(x) from both sidescos4(x)−1+sin4(x)=0
Apply exponent rule: ab=a2ab−2−1+cos4(x)+sin2(x)sin2(x)=0
Rewrite using trig identities
−1+cos4(x)+sin2(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+cos4(x)+(1−cos2(x))(1−cos2(x))
Simplify −1+cos4(x)+(1−cos2(x))(1−cos2(x)):2cos4(x)−2cos2(x)
−1+cos4(x)+(1−cos2(x))(1−cos2(x))
(1−cos2(x))(1−cos2(x))=(1−cos2(x))2
(1−cos2(x))(1−cos2(x))
Apply exponent rule: ab⋅ac=ab+c(1−cos2(x))(1−cos2(x))=(1−cos2(x))1+1=(1−cos2(x))1+1
Add the numbers: 1+1=2=(1−cos2(x))2
=−1+cos4(x)+(−cos2(x)+1)2
(1−cos2(x))2:1−2cos2(x)+cos4(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=1,b=cos2(x)
=12−2⋅1⋅cos2(x)+(cos2(x))2
Simplify 12−2⋅1⋅cos2(x)+(cos2(x))2:1−2cos2(x)+cos4(x)
12−2⋅1⋅cos2(x)+(cos2(x))2
Apply rule 1a=112=1=1−2⋅1⋅cos2(x)+(cos2(x))2
2⋅1⋅cos2(x)=2cos2(x)
2⋅1⋅cos2(x)
Multiply the numbers: 2⋅1=2=2cos2(x)
(cos2(x))2=cos4(x)
(cos2(x))2
Apply exponent rule: (ab)c=abc=cos2⋅2(x)
Multiply the numbers: 2⋅2=4=cos4(x)
=1−2cos2(x)+cos4(x)
=1−2cos2(x)+cos4(x)
=−1+cos4(x)+1−2cos2(x)+cos4(x)
Simplify −1+cos4(x)+1−2cos2(x)+cos4(x):2cos4(x)−2cos2(x)
−1+cos4(x)+1−2cos2(x)+cos4(x)
Group like terms=cos4(x)−2cos2(x)+cos4(x)−1+1
Add similar elements: cos4(x)+cos4(x)=2cos4(x)=2cos4(x)−2cos2(x)−1+1
−1+1=0=2cos4(x)−2cos2(x)
=2cos4(x)−2cos2(x)
=2cos4(x)−2cos2(x)
−2cos2(x)+2cos4(x)=0
Solve by substitution
−2cos2(x)+2cos4(x)=0
Let: cos(x)=u−2u2+2u4=0
−2u2+2u4=0:u=1,u=−1,u=0
−2u2+2u4=0
Write in the standard form an​xn+…+a1​x+a0​=02u4−2u2=0
Rewrite the equation with v=u2 and v2=u42v2−2v=0
Solve 2v2−2v=0:v=1,v=0
2v2−2v=0
Solve with the quadratic formula
2v2−2v=0
Quadratic Equation Formula:
For a=2,b=−2,c=0v1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅0​​
v1,2​=2⋅2−(−2)±(−2)2−4⋅2⋅0​​
(−2)2−4⋅2⋅0​=2
(−2)2−4⋅2⋅0​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅2⋅0​
Apply rule 0⋅a=0=22−0​
22−0=22=22​
Apply radical rule: assuming a≥0=2
v1,2​=2⋅2−(−2)±2​
Separate the solutionsv1​=2⋅2−(−2)+2​,v2​=2⋅2−(−2)−2​
v=2⋅2−(−2)+2​:1
2⋅2−(−2)+2​
Apply rule −(−a)=a=2⋅22+2​
Add the numbers: 2+2=4=2⋅24​
Multiply the numbers: 2⋅2=4=44​
Apply rule aa​=1=1
v=2⋅2−(−2)−2​:0
2⋅2−(−2)−2​
Apply rule −(−a)=a=2⋅22−2​
Subtract the numbers: 2−2=0=2⋅20​
Multiply the numbers: 2⋅2=4=40​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:v=1,v=0
v=1,v=0
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The solutions are
u=1,u=−1,u=0
Substitute back u=cos(x)cos(x)=1,cos(x)=−1,cos(x)=0
cos(x)=1,cos(x)=−1,cos(x)=0
cos(x)=1:x=2πn
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Combine all the solutionsx=2πn,x=π+2πn,x=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sec^2(x)+cot^2(x)=csc^2(x)((sin^2(x)))/((1-cos(x)))=1.23sin(2x)=cos(8x)8=sin(x)-2cot(x)+csc^2(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for cos^4(x)=1-sin^4(x) ?

    The general solution for cos^4(x)=1-sin^4(x) is x=2pin,x=pi+2pin,x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024