Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

7.5=5sin(pi/2 (x-2))+5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

7.5=5sin(2π​(x−2))+5

Solution

x=4n+37​,x=4n+311​
+1
Degrees
x=133.69015…∘+229.18311…∘n,x=210.08452…∘+229.18311…∘n
Solution steps
7.5=5sin(2π​(x−2))+5
Switch sides5sin(2π​(x−2))+5=7.5
Move 5to the right side
5sin(2π​(x−2))+5=7.5
Subtract 5 from both sides5sin(2π​(x−2))+5−5=7.5−5
Simplify5sin(2π​(x−2))=2.5
5sin(2π​(x−2))=2.5
Divide both sides by 5
5sin(2π​(x−2))=2.5
Divide both sides by 555sin(2π​(x−2))​=52.5​
Simplifysin(2π​(x−2))=0.5
sin(2π​(x−2))=0.5
General solutions for sin(2π​(x−2))=0.5
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2π​(x−2)=6π​+2πn,2π​(x−2)=65π​+2πn
2π​(x−2)=6π​+2πn,2π​(x−2)=65π​+2πn
Solve 2π​(x−2)=6π​+2πn:x=4n+37​
2π​(x−2)=6π​+2πn
Multiply both sides by 2
2π​(x−2)=6π​+2πn
Multiply both sides by 22⋅2π​(x−2)=2⋅6π​+2⋅2πn
Simplify
2⋅2π​(x−2)=2⋅6π​+2⋅2πn
Simplify 2⋅2π​(x−2):π(x−2)
2⋅2π​(x−2)
Multiply fractions: a⋅cb​=ca⋅b​=22π​(x−2)
Cancel the common factor: 2=(x−2)π
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
π(x−2)=3π​+4πn
π(x−2)=3π​+4πn
π(x−2)=3π​+4πn
Divide both sides by π
π(x−2)=3π​+4πn
Divide both sides by πππ(x−2)​=π3π​​+π4πn​
Simplify
ππ(x−2)​=π3π​​+π4πn​
Simplify ππ(x−2)​:x−2
ππ(x−2)​
Cancel the common factor: π=x−2
Simplify π3π​​+π4πn​:31​+4n
π3π​​+π4πn​
π3π​​=31​
π3π​​
Apply the fraction rule: acb​​=c⋅ab​=3ππ​
Cancel the common factor: π=31​
π4πn​=4n
π4πn​
Cancel the common factor: π=4n
=31​+4n
x−2=31​+4n
x−2=31​+4n
x−2=31​+4n
Move 2to the right side
x−2=31​+4n
Add 2 to both sidesx−2+2=31​+4n+2
Simplify
x−2+2=31​+4n+2
Simplify x−2+2:x
x−2+2
Add similar elements: −2+2=0
=x
Simplify 31​+4n+2:4n+37​
31​+4n+2
Combine the fractions 2+31​:37​
2+31​
Convert element to fraction: 2=32⋅3​=32⋅3​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32⋅3+1​
2⋅3+1=7
2⋅3+1
Multiply the numbers: 2⋅3=6=6+1
Add the numbers: 6+1=7=7
=37​
=4n+37​
x=4n+37​
x=4n+37​
x=4n+37​
Solve 2π​(x−2)=65π​+2πn:x=4n+311​
2π​(x−2)=65π​+2πn
Multiply both sides by 2
2π​(x−2)=65π​+2πn
Multiply both sides by 22⋅2π​(x−2)=2⋅65π​+2⋅2πn
Simplify
2⋅2π​(x−2)=2⋅65π​+2⋅2πn
Simplify 2⋅2π​(x−2):π(x−2)
2⋅2π​(x−2)
Multiply fractions: a⋅cb​=ca⋅b​=22π​(x−2)
Cancel the common factor: 2=(x−2)π
Simplify 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=35π​+4πn
π(x−2)=35π​+4πn
π(x−2)=35π​+4πn
π(x−2)=35π​+4πn
Divide both sides by π
π(x−2)=35π​+4πn
Divide both sides by πππ(x−2)​=π35π​​+π4πn​
Simplify
ππ(x−2)​=π35π​​+π4πn​
Simplify ππ(x−2)​:x−2
ππ(x−2)​
Cancel the common factor: π=x−2
Simplify π35π​​+π4πn​:35​+4n
π35π​​+π4πn​
π35π​​=35​
π35π​​
Apply the fraction rule: acb​​=c⋅ab​=3π5π​
Cancel the common factor: π=35​
π4πn​=4n
π4πn​
Cancel the common factor: π=4n
=35​+4n
x−2=35​+4n
x−2=35​+4n
x−2=35​+4n
Move 2to the right side
x−2=35​+4n
Add 2 to both sidesx−2+2=35​+4n+2
Simplify
x−2+2=35​+4n+2
Simplify x−2+2:x
x−2+2
Add similar elements: −2+2=0
=x
Simplify 35​+4n+2:4n+311​
35​+4n+2
Combine the fractions 2+35​:311​
2+35​
Convert element to fraction: 2=32⋅3​=32⋅3​+35​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32⋅3+5​
2⋅3+5=11
2⋅3+5
Multiply the numbers: 2⋅3=6=6+5
Add the numbers: 6+5=11=11
=311​
=4n+311​
x=4n+311​
x=4n+311​
x=4n+311​
x=4n+37​,x=4n+311​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2cos(θ)+2sqrt(3)=sqrt(3)-2sqrt(2)=-4sin(2θ)8cos(x)=4cos^2(x)+3(26)/(sin(88))=(21)/(sin(c))3tan^2(3x)=1

Frequently Asked Questions (FAQ)

  • What is the general solution for 7.5=5sin(pi/2 (x-2))+5 ?

    The general solution for 7.5=5sin(pi/2 (x-2))+5 is x=4n+7/3 ,x=4n+11/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024