Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^3(x/2)cos(x/2)=cos^2(x/2)sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin3(2x​)cos(2x​)=cos2(2x​)sin(x)

Solution

x=π+4πn,x=3π+4πn,x=4πn,x=2π+4πn,x=23π​+2πn,x=2π​+2πn
+1
Degrees
x=180∘+720∘n,x=540∘+720∘n,x=0∘+720∘n,x=360∘+720∘n,x=270∘+360∘n,x=90∘+360∘n
Solution steps
2sin3(2x​)cos(2x​)=cos2(2x​)sin(x)
Subtract cos2(2x​)sin(x) from both sides2sin3(2x​)cos(2x​)−cos2(2x​)sin(x)=0
Let: u=2x​2sin3(u)cos(u)−cos2(u)sin(2u)=0
Factor 2sin3(u)cos(u)−cos2(u)sin(2u):cos(u)(2sin3(u)−cos(u)sin(2u))
2sin3(u)cos(u)−cos2(u)sin(2u)
Apply exponent rule: ab+c=abaccos2(u)=cos(u)cos(u)=2sin3(u)cos(u)−cos(u)cos(u)sin(2u)
Factor out common term cos(u)=cos(u)(2sin3(u)−cos(u)sin(2u))
cos(u)(2sin3(u)−cos(u)sin(2u))=0
Solving each part separatelycos(u)=0or2sin3(u)−cos(u)sin(2u)=0
cos(u)=0:u=2π​+2πn,u=23π​+2πn
cos(u)=0
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
2sin3(u)−cos(u)sin(2u)=0:u=2πn,u=π+2πn,u=43π​+πn,u=4π​+πn
2sin3(u)−cos(u)sin(2u)=0
Rewrite using trig identities
2sin3(u)−cos(u)sin(2u)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin3(u)−cos(u)⋅2sin(u)cos(u)
cos(u)⋅2sin(u)cos(u)=2cos2(u)sin(u)
cos(u)⋅2sin(u)cos(u)
Apply exponent rule: ab⋅ac=ab+ccos(u)cos(u)=cos1+1(u)=2sin(u)cos1+1(u)
Add the numbers: 1+1=2=2sin(u)cos2(u)
=2sin3(u)−2cos2(u)sin(u)
2sin3(u)−2cos2(u)sin(u)=0
Factor 2sin3(u)−2cos2(u)sin(u):2sin(u)(sin(u)+cos(u))(sin(u)−cos(u))
2sin3(u)−2cos2(u)sin(u)
Apply exponent rule: ab+c=abacsin3(u)=sin(u)sin2(u)=2sin(u)sin2(u)−2sin(u)cos2(u)
Factor out common term 2sin(u)=2sin(u)(sin2(u)−cos2(u))
Factor sin2(u)−cos2(u):(sin(u)+cos(u))(sin(u)−cos(u))
sin2(u)−cos2(u)
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(u)−cos2(u)=(sin(u)+cos(u))(sin(u)−cos(u))=(sin(u)+cos(u))(sin(u)−cos(u))
=2sin(u)(sin(u)+cos(u))(sin(u)−cos(u))
2sin(u)(sin(u)+cos(u))(sin(u)−cos(u))=0
Solving each part separatelysin(u)=0orsin(u)+cos(u)=0orsin(u)−cos(u)=0
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
sin(u)+cos(u)=0:u=43π​+πn
sin(u)+cos(u)=0
Rewrite using trig identities
sin(u)+cos(u)=0
Divide both sides by cos(u),cos(u)=0cos(u)sin(u)+cos(u)​=cos(u)0​
Simplifycos(u)sin(u)​+1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(u)+1=0
tan(u)+1=0
Move 1to the right side
tan(u)+1=0
Subtract 1 from both sidestan(u)+1−1=0−1
Simplifytan(u)=−1
tan(u)=−1
General solutions for tan(u)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
u=43π​+πn
u=43π​+πn
sin(u)−cos(u)=0:u=4π​+πn
sin(u)−cos(u)=0
Rewrite using trig identities
sin(u)−cos(u)=0
Divide both sides by cos(u),cos(u)=0cos(u)sin(u)−cos(u)​=cos(u)0​
Simplifycos(u)sin(u)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(u)−1=0
tan(u)−1=0
Move 1to the right side
tan(u)−1=0
Add 1 to both sidestan(u)−1+1=0+1
Simplifytan(u)=1
tan(u)=1
General solutions for tan(u)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
u=4π​+πn
u=4π​+πn
Combine all the solutionsu=2πn,u=π+2πn,u=43π​+πn,u=4π​+πn
Combine all the solutionsu=2π​+2πn,u=23π​+2πn,u=2πn,u=π+2πn,u=43π​+πn,u=4π​+πn
Substitute back u=2x​
2x​=2π​+2πn:x=π+4πn
2x​=2π​+2πn
Multiply both sides by 2
2x​=2π​+2πn
Multiply both sides by 222x​=2⋅2π​+2⋅2πn
Simplify
22x​=2⋅2π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
x=π+4πn
x=π+4πn
x=π+4πn
2x​=23π​+2πn:x=3π+4πn
2x​=23π​+2πn
Multiply both sides by 2
2x​=23π​+2πn
Multiply both sides by 222x​=2⋅23π​+2⋅2πn
Simplify
22x​=2⋅23π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multiply fractions: a⋅cb​=ca⋅b​=23π2​
Cancel the common factor: 2=3π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π+4πn
x=3π+4πn
x=3π+4πn
x=3π+4πn
2x​=2πn:x=4πn
2x​=2πn
Multiply both sides by 2
2x​=2πn
Multiply both sides by 222x​=2⋅2πn
Simplifyx=4πn
x=4πn
2x​=π+2πn:x=2π+4πn
2x​=π+2πn
Multiply both sides by 2
2x​=π+2πn
Multiply both sides by 222x​=2π+2⋅2πn
Simplifyx=2π+4πn
x=2π+4πn
2x​=43π​+πn:x=23π​+2πn
2x​=43π​+πn
Multiply both sides by 2
2x​=43π​+πn
Multiply both sides by 222x​=2⋅43π​+2πn
Simplify
22x​=2⋅43π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅43π​+2πn:23π​+2πn
2⋅43π​+2πn
2⋅43π​=23π​
2⋅43π​
Multiply fractions: a⋅cb​=ca⋅b​=43π2​
Multiply the numbers: 3⋅2=6=46π​
Cancel the common factor: 2=23π​
=23π​+2πn
x=23π​+2πn
x=23π​+2πn
x=23π​+2πn
2x​=4π​+πn:x=2π​+2πn
2x​=4π​+πn
Multiply both sides by 2
2x​=4π​+πn
Multiply both sides by 222x​=2⋅4π​+2πn
Simplify
22x​=2⋅4π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅4π​+2πn:2π​+2πn
2⋅4π​+2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
=2π​+2πn
x=2π​+2πn
x=2π​+2πn
x=2π​+2πn
x=π+4πn,x=3π+4πn,x=4πn,x=2π+4πn,x=23π​+2πn,x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sqrt(3)sin(x)-2cos(x)=sqrt(7)cos(t)= 40/41cos^2(a)+cos(a)=0-2cos(θ-1)=0.5cos(θ)= 1/9
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024