Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4tan(x)+2sin(x)cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4tan(x)+2sin(x)cos(x)=0

Solution

x=2πn,x=π+2πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n
Solution steps
4tan(x)+2sin(x)cos(x)=0
Express with sin, cos
4tan(x)+2cos(x)sin(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=4⋅cos(x)sin(x)​+2cos(x)sin(x)
Simplify 4⋅cos(x)sin(x)​+2cos(x)sin(x):cos(x)4sin(x)+2cos2(x)sin(x)​
4⋅cos(x)sin(x)​+2cos(x)sin(x)
Multiply 4⋅cos(x)sin(x)​:cos(x)4sin(x)​
4⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅4​
=cos(x)4sin(x)​+2cos(x)sin(x)
Convert element to fraction: 2cos(x)sin(x)=cos(x)2cos(x)sin(x)cos(x)​=cos(x)sin(x)⋅4​+cos(x)2cos(x)sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)⋅4+2cos(x)sin(x)cos(x)​
sin(x)⋅4+2cos(x)sin(x)cos(x)=4sin(x)+2cos2(x)sin(x)
sin(x)⋅4+2cos(x)sin(x)cos(x)
2cos(x)sin(x)cos(x)=2cos2(x)sin(x)
2cos(x)sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=4sin(x)+2cos2(x)sin(x)
=cos(x)4sin(x)+2cos2(x)sin(x)​
=cos(x)4sin(x)+2cos2(x)sin(x)​
cos(x)4sin(x)+2cos2(x)sin(x)​=0
g(x)f(x)​=0⇒f(x)=04sin(x)+2cos2(x)sin(x)=0
Factor 4sin(x)+2cos2(x)sin(x):2sin(x)(cos2(x)+2)
4sin(x)+2cos2(x)sin(x)
Rewrite 4 as 2⋅2=2⋅2sin(x)+2sin(x)cos2(x)
Factor out common term 2sin(x)=2sin(x)(2+cos2(x))
2sin(x)(cos2(x)+2)=0
Solving each part separatelysin(x)=0orcos2(x)+2=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
cos2(x)+2=0:No Solution
cos2(x)+2=0
Solve by substitution
cos2(x)+2=0
Let: cos(x)=uu2+2=0
u2+2=0:u=2​i,u=−2​i
u2+2=0
Move 2to the right side
u2+2=0
Subtract 2 from both sidesu2+2−2=0−2
Simplifyu2=−2
u2=−2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−2​,u=−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
Simplify −−2​:−2​i
−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
=−2​i
u=2​i,u=−2​i
Substitute back u=cos(x)cos(x)=2​i,cos(x)=−2​i
cos(x)=2​i,cos(x)=−2​i
cos(x)=2​i:No Solution
cos(x)=2​i
NoSolution
cos(x)=−2​i:No Solution
cos(x)=−2​i
NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsx=2πn,x=π+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

3sin(x)+6cos(x)=43tan(2x+1)=2tan(2x)-2=3tan(x)sin(x-pi/6)=0arccot(x-2)=arccot(x-1)+arccot(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 4tan(x)+2sin(x)cos(x)=0 ?

    The general solution for 4tan(x)+2sin(x)cos(x)=0 is x=2pin,x=pi+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024