Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(2x)-2=3tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(2x)−2=3tan(x)

Solution

x=0.67351…+πn
+1
Degrees
x=38.58935…∘+180∘n
Solution steps
tan(2x)−2=3tan(x)
Subtract 3tan(x) from both sidestan(2x)−2−3tan(x)=0
Rewrite using trig identities
−2+tan(2x)−3tan(x)
Use the Double Angle identity: tan(2x)=1−tan2(x)2tan(x)​=−2+1−tan2(x)2tan(x)​−3tan(x)
Combine the fractions −tan2(x)+12tan(x)​−3tan(x):1−tan2(x)−tan(x)+3tan3(x)​
−tan2(x)+12tan(x)​−3tan(x)
Convert element to fraction: 3tan(x)=1−tan2(x)3tan(x)(1−tan2(x))​=1−tan2(x)2tan(x)​−1−tan2(x)3tan(x)(1−tan2(x))​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1−tan2(x)2tan(x)−3tan(x)(1−tan2(x))​
Expand 2tan(x)−3tan(x)(1−tan2(x)):−tan(x)+3tan3(x)
2tan(x)−3tan(x)(1−tan2(x))
Expand −3tan(x)(1−tan2(x)):−3tan(x)+3tan3(x)
−3tan(x)(1−tan2(x))
Apply the distributive law: a(b−c)=ab−aca=−3tan(x),b=1,c=tan2(x)=−3tan(x)⋅1−(−3tan(x))tan2(x)
Apply minus-plus rules−(−a)=a=−3⋅1⋅tan(x)+3tan2(x)tan(x)
Simplify −3⋅1⋅tan(x)+3tan2(x)tan(x):−3tan(x)+3tan3(x)
−3⋅1⋅tan(x)+3tan2(x)tan(x)
3⋅1⋅tan(x)=3tan(x)
3⋅1⋅tan(x)
Multiply the numbers: 3⋅1=3=3tan(x)
3tan2(x)tan(x)=3tan3(x)
3tan2(x)tan(x)
Apply exponent rule: ab⋅ac=ab+ctan2(x)tan(x)=tan2+1(x)=3tan2+1(x)
Add the numbers: 2+1=3=3tan3(x)
=−3tan(x)+3tan3(x)
=−3tan(x)+3tan3(x)
=2tan(x)−3tan(x)+3tan3(x)
Add similar elements: 2tan(x)−3tan(x)=−tan(x)=−tan(x)+3tan3(x)
=1−tan2(x)−tan(x)+3tan3(x)​
=1−tan2(x)−tan(x)+3tan3(x)​−2
−2+1−tan2(x)−tan(x)+3tan3(x)​=0
−2+1−tan2(x)−tan(x)+3tan3(x)​=0
Solve by substitution
−2+1−tan2(x)−tan(x)+3tan3(x)​=0
Let: tan(x)=u−2+1−u2−u+3u3​=0
−2+1−u2−u+3u3​=0:u≈0.79798…
−2+1−u2−u+3u3​=0
Multiply both sides by 1−u2
−2+1−u2−u+3u3​=0
Multiply both sides by 1−u2−2(1−u2)+1−u2−u+3u3​(1−u2)=0⋅(1−u2)
Simplify
−2(1−u2)+1−u2−u+3u3​(1−u2)=0⋅(1−u2)
Simplify 1−u2−u+3u3​(1−u2):−u+3u3
1−u2−u+3u3​(1−u2)
Multiply fractions: a⋅cb​=ca⋅b​=1−u2(−u+3u3)(1−u2)​
Cancel the common factor: 1−u2=−−u+3u3
Simplify 0⋅(1−u2):0
0⋅(1−u2)
Apply rule 0⋅a=0=0
−2(1−u2)−u+3u3=0
−2(1−u2)−u+3u3=0
−2(1−u2)−u+3u3=0
Solve −2(1−u2)−u+3u3=0:u≈0.79798…
−2(1−u2)−u+3u3=0
Expand −2(1−u2)−u+3u3:−2+2u2−u+3u3
−2(1−u2)−u+3u3
Expand −2(1−u2):−2+2u2
−2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=u2=−2⋅1−(−2)u2
Apply minus-plus rules−(−a)=a=−2⋅1+2u2
Multiply the numbers: 2⋅1=2=−2+2u2
=−2+2u2−u+3u3
−2+2u2−u+3u3=0
Write in the standard form an​xn+…+a1​x+a0​=03u3+2u2−u−2=0
Find one solution for 3u3+2u2−u−2=0 using Newton-Raphson:u≈0.79798…
3u3+2u2−u−2=0
Newton-Raphson Approximation Definition
f(u)=3u3+2u2−u−2
Find f′(u):9u2+4u−1
dud​(3u3+2u2−u−2)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u3)+dud​(2u2)−dudu​−dud​(2)
dud​(3u3)=9u2
dud​(3u3)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u3)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅3u3−1
Simplify=9u2
dud​(2u2)=4u
dud​(2u2)
Take the constant out: (a⋅f)′=a⋅f′=2dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplify=4u
dudu​=1
dudu​
Apply the common derivative: dudu​=1=1
dud​(2)=0
dud​(2)
Derivative of a constant: dxd​(a)=0=0
=9u2+4u−1−0
Simplify=9u2+4u−1
Let u0​=1Compute un+1​ until Δun+1​<0.000001
u1​=0.83333…:Δu1​=0.16666…
f(u0​)=3⋅13+2⋅12−1−2=2f′(u0​)=9⋅12+4⋅1−1=12u1​=0.83333…
Δu1​=∣0.83333…−1∣=0.16666…Δu1​=0.16666…
u2​=0.79935…:Δu2​=0.03398…
f(u1​)=3⋅0.83333…3+2⋅0.83333…2−0.83333…−2=0.29166…f′(u1​)=9⋅0.83333…2+4⋅0.83333…−1=8.58333…u2​=0.79935…
Δu2​=∣0.79935…−0.83333…∣=0.03398…Δu2​=0.03398…
u3​=0.79798…:Δu3​=0.00136…
f(u2​)=3⋅0.79935…3+2⋅0.79935…2−0.79935…−2=0.01085…f′(u2​)=9⋅0.79935…2+4⋅0.79935…−1=7.94809…u3​=0.79798…
Δu3​=∣0.79798…−0.79935…∣=0.00136…Δu3​=0.00136…
u4​=0.79798…:Δu4​=2.16223E−6
f(u3​)=3⋅0.79798…3+2⋅0.79798…2−0.79798…−2=0.00001…f′(u3​)=9⋅0.79798…2+4⋅0.79798…−1=7.92300…u4​=0.79798…
Δu4​=∣0.79798…−0.79798…∣=2.16223E−6Δu4​=2.16223E−6
u5​=0.79798…:Δu5​=5.41816E−12
f(u4​)=3⋅0.79798…3+2⋅0.79798…2−0.79798…−2=4.29279E−11f′(u4​)=9⋅0.79798…2+4⋅0.79798…−1=7.92296…u5​=0.79798…
Δu5​=∣0.79798…−0.79798…∣=5.41816E−12Δu5​=5.41816E−12
u≈0.79798…
Apply long division:u−0.79798…3u3+2u2−u−2​=3u2+4.39395…u+2.50631…
3u2+4.39395…u+2.50631…≈0
Find one solution for 3u2+4.39395…u+2.50631…=0 using Newton-Raphson:No Solution for u∈R
3u2+4.39395…u+2.50631…=0
Newton-Raphson Approximation Definition
f(u)=3u2+4.39395…u+2.50631…
Find f′(u):6u+4.39395…
dud​(3u2+4.39395…u+2.50631…)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dud​(3u2)+dud​(4.39395…u)+dud​(2.50631…)
dud​(3u2)=6u
dud​(3u2)
Take the constant out: (a⋅f)′=a⋅f′=3dud​(u2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=3⋅2u2−1
Simplify=6u
dud​(4.39395…u)=4.39395…
dud​(4.39395…u)
Take the constant out: (a⋅f)′=a⋅f′=4.39395…dudu​
Apply the common derivative: dudu​=1=4.39395…⋅1
Simplify=4.39395…
dud​(2.50631…)=0
dud​(2.50631…)
Derivative of a constant: dxd​(a)=0=0
=6u+4.39395…+0
Simplify=6u+4.39395…
Let u0​=−1Compute un+1​ until Δun+1​<0.000001
u1​=−0.30739…:Δu1​=0.69260…
f(u0​)=3(−1)2+4.39395…(−1)+2.50631…=1.11235…f′(u0​)=6(−1)+4.39395…=−1.60604…u1​=−0.30739…
Δu1​=∣−0.30739…−(−1)∣=0.69260…Δu1​=0.69260…
u2​=−0.87184…:Δu2​=0.56444…
f(u1​)=3(−0.30739…)2+4.39395…(−0.30739…)+2.50631…=1.43911…f′(u1​)=6(−0.30739…)+4.39395…=2.54959…u2​=−0.87184…
Δu2​=∣−0.87184…−(−0.30739…)∣=0.56444…Δu2​=0.56444…
u3​=0.26997…:Δu3​=1.14181…
f(u2​)=3(−0.87184…)2+4.39395…(−0.87184…)+2.50631…=0.95580…f′(u2​)=6(−0.87184…)+4.39395…=−0.83708…u3​=0.26997…
Δu3​=∣0.26997…−(−0.87184…)∣=1.14181…Δu3​=1.14181…
u4​=−0.38040…:Δu4​=0.65037…
f(u3​)=3⋅0.26997…2+4.39395…⋅0.26997…+2.50631…=3.91122…f′(u3​)=6⋅0.26997…+4.39395…=6.01380…u4​=−0.38040…
Δu4​=∣−0.38040…−0.26997…∣=0.65037…Δu4​=0.65037…
u5​=−0.98136…:Δu5​=0.60096…
f(u4​)=3(−0.38040…)2+4.39395…(−0.38040…)+2.50631…=1.26896…f′(u4​)=6(−0.38040…)+4.39395…=2.11155…u5​=−0.98136…
Δu5​=∣−0.98136…−(−0.38040…)∣=0.60096…Δu5​=0.60096…
u6​=−0.25625…:Δu6​=0.72510…
f(u5​)=3(−0.98136…)2+4.39395…(−0.98136…)+2.50631…=1.08346…f′(u5​)=6(−0.98136…)+4.39395…=−1.49421…u6​=−0.25625…
Δu6​=∣−0.25625…−(−0.98136…)∣=0.72510…Δu6​=0.72510…
u7​=−0.80846…:Δu7​=0.55220…
f(u6​)=3(−0.25625…)2+4.39395…(−0.25625…)+2.50631…=1.57733…f′(u6​)=6(−0.25625…)+4.39395…=2.85642…u7​=−0.80846…
Δu7​=∣−0.80846…−(−0.25625…)∣=0.55220…Δu7​=0.55220…
u8​=1.19406…:Δu8​=2.00252…
f(u7​)=3(−0.80846…)2+4.39395…(−0.80846…)+2.50631…=0.91479…f′(u7​)=6(−0.80846…)+4.39395…=−0.45682…u8​=1.19406…
Δu8​=∣1.19406…−(−0.80846…)∣=2.00252…Δu8​=2.00252…
u9​=0.15322…:Δu9​=1.04083…
f(u8​)=3⋅1.19406…2+4.39395…⋅1.19406…+2.50631…=12.03031…f′(u8​)=6⋅1.19406…+4.39395…=11.55832…u9​=0.15322…
Δu9​=∣0.15322…−1.19406…∣=1.04083…Δu9​=1.04083…
u10​=−0.45844…:Δu10​=0.61167…
f(u9​)=3⋅0.15322…2+4.39395…⋅0.15322…+2.50631…=3.25001…f′(u9​)=6⋅0.15322…+4.39395…=5.31331…u10​=−0.45844…
Δu10​=∣−0.45844…−0.15322…∣=0.61167…Δu10​=0.61167…
u11​=−1.14149…:Δu11​=0.68305…
f(u10​)=3(−0.45844…)2+4.39395…(−0.45844…)+2.50631…=1.12243…f′(u10​)=6(−0.45844…)+4.39395…=1.64326…u11​=−1.14149…
Δu11​=∣−1.14149…−(−0.45844…)∣=0.68305…Δu11​=0.68305…
Cannot find solution
The solution isu≈0.79798…
u≈0.79798…
Verify Solutions
Find undefined (singularity) points:u=1,u=−1
Take the denominator(s) of −2+1−u2−u+3u3​ and compare to zero
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The following points are undefinedu=1,u=−1
Combine undefined points with solutions:
u≈0.79798…
Substitute back u=tan(x)tan(x)≈0.79798…
tan(x)≈0.79798…
tan(x)=0.79798…:x=arctan(0.79798…)+πn
tan(x)=0.79798…
Apply trig inverse properties
tan(x)=0.79798…
General solutions for tan(x)=0.79798…tan(x)=a⇒x=arctan(a)+πnx=arctan(0.79798…)+πn
x=arctan(0.79798…)+πn
Combine all the solutionsx=arctan(0.79798…)+πn
Show solutions in decimal formx=0.67351…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x-pi/6)=0arccot(x-2)=arccot(x-1)+arccot(x)arccos(2x)=pisolvefor t,x=4sin(t)sin(2x)+1.5cos(x)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(2x)-2=3tan(x) ?

    The general solution for tan(2x)-2=3tan(x) is x=0.67351…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024