Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x)+1.5cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)+1.5cos(x)=0

Solution

x=2π​+2πn,x=23π​+2πn,x=−0.84806…+2πn,x=π+0.84806…+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=−48.59037…∘+360∘n,x=228.59037…∘+360∘n
Solution steps
sin(2x)+1.5cos(x)=0
Rewrite using trig identities
sin(2x)+1.5cos(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(x)cos(x)+1.5cos(x)
1.5cos(x)+2cos(x)sin(x)=0
Factor 1.5cos(x)+2cos(x)sin(x):cos(x)(2sin(x)+1.5)
1.5cos(x)+2cos(x)sin(x)
Factor out common term cos(x)=cos(x)(1.5+2sin(x))
cos(x)(2sin(x)+1.5)=0
Solving each part separatelycos(x)=0or2sin(x)+1.5=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
2sin(x)+1.5=0:x=arcsin(−0.75)+2πn,x=π+arcsin(0.75)+2πn
2sin(x)+1.5=0
Move 1.5to the right side
2sin(x)+1.5=0
Subtract 1.5 from both sides2sin(x)+1.5−1.5=0−1.5
Simplify2sin(x)=−1.5
2sin(x)=−1.5
Divide both sides by 2
2sin(x)=−1.5
Divide both sides by 222sin(x)​=2−1.5​
Simplify
22sin(x)​=2−1.5​
Simplify 22sin(x)​:sin(x)
22sin(x)​
Divide the numbers: 22​=1=sin(x)
Simplify 2−1.5​:−0.75
2−1.5​
Apply the fraction rule: b−a​=−ba​=−21.5​
Divide the numbers: 21.5​=0.75=−0.75
sin(x)=−0.75
sin(x)=−0.75
sin(x)=−0.75
Apply trig inverse properties
sin(x)=−0.75
General solutions for sin(x)=−0.75sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.75)+2πn,x=π+arcsin(0.75)+2πn
x=arcsin(−0.75)+2πn,x=π+arcsin(0.75)+2πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=arcsin(−0.75)+2πn,x=π+arcsin(0.75)+2πn
Show solutions in decimal formx=2π​+2πn,x=23π​+2πn,x=−0.84806…+2πn,x=π+0.84806…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(wpi)=0cos(x)=-82sin(2x)=sin^2(x)sin^2(x)=-(1/2)sin(x/2)-cos(x/2)=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024