Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1=sech^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1=sech2(x)

Solution

x=0
+1
Degrees
x=0∘
Solution steps
1=sech2(x)
Switch sidessech2(x)=1
Rewrite using trig identities
sech2(x)=1
Use the Hyperbolic identity: sech(x)=ex+e−x2​(ex+e−x2​)2=1
(ex+e−x2​)2=1
(ex+e−x2​)2=1:x=0
(ex+e−x2​)2=1
Apply exponent rules
(ex+e−x2​)2=1
Apply exponent rule: abc=(ab)ce−x=(ex)−1(ex+(ex)−12​)2=1
(ex+(ex)−12​)2=1
Rewrite the equation with ex=u(u+(u)−12​)2=1
Solve (u+u−12​)2=1:u=1,u=−1
(u+u−12​)2=1
Refine(u2+1)24u2​=1
Multiply both sides by (u2+1)2
(u2+1)24u2​=1
Multiply both sides by (u2+1)2(u2+1)24u2​(u2+1)2=1⋅(u2+1)2
Simplify
(u2+1)24u2​(u2+1)2=1⋅(u2+1)2
Simplify (u2+1)24u2​(u2+1)2:4u2
(u2+1)24u2​(u2+1)2
Multiply fractions: a⋅cb​=ca⋅b​=(u2+1)24u2(u2+1)2​
Cancel the common factor: (u2+1)2=4u2
Simplify 1⋅(u2+1)2:(u2+1)2
1⋅(u2+1)2
Multiply: 1⋅(u2+1)2=(u2+1)2=(u2+1)2
4u2=(u2+1)2
4u2=(u2+1)2
4u2=(u2+1)2
Solve 4u2=(u2+1)2:u=1,u=−1
4u2=(u2+1)2
Expand (u2+1)2:u4+2u2+1
(u2+1)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplify (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Apply rule 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiply the numbers: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
4u2=u4+2u2+1
Switch sidesu4+2u2+1=4u2
Move 4u2to the left side
u4+2u2+1=4u2
Subtract 4u2 from both sidesu4+2u2+1−4u2=4u2−4u2
Simplifyu4−2u2+1=0
u4−2u2+1=0
Rewrite the equation with v=u2 and v2=u4v2−2v+1=0
Solve v2−2v+1=0:v=1
v2−2v+1=0
Solve with the quadratic formula
v2−2v+1=0
Quadratic Equation Formula:
For a=1,b=−2,c=1v1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
v1,2​=2⋅1−(−2)±(−2)2−4⋅1⋅1​​
(−2)2−4⋅1⋅1=0
(−2)2−4⋅1⋅1
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22−4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=22−4
22=4=4−4
Subtract the numbers: 4−4=0=0
v1,2​=2⋅1−(−2)±0​​
v=2⋅1−(−2)​
2⋅1−(−2)​=1
2⋅1−(−2)​
Apply rule −(−a)=a=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
v=1
The solution to the quadratic equation is:v=1
v=1
Substitute back v=u2,solve for u
Solve u2=1:u=1,u=−1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply radical rule: 1​=1=1
−1​=−1
−1​
Apply radical rule: 1​=11​=1=−1
u=1,u=−1
The solutions are
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of (u+u−12​)2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
u=1,u=−1
Substitute back u=ex,solve for x
Solve ex=1:x=0
ex=1
Apply exponent rules
ex=1
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(1)
Apply log rule: ln(ea)=aln(ex)=xx=ln(1)
Simplify ln(1):0
ln(1)
Apply log rule: loga​(1)=0=0
x=0
x=0
Solve ex=−1:No Solution for x∈R
ex=−1
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=0
x=0

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

solvefor t,fw=2+cos(10pit)tan(θ)-sec(θ)=sqrt(3)cos(t)= 24/25sec^2(t)+2sec(t)=0sin(270+x)-cos(180-x)=-sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 1=sech^2(x) ?

    The general solution for 1=sech^2(x) is x=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024