Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5cos^2(x)= 1/(2(1+cos^2(x)))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5cos2(x)=2(1+cos2(x))1​

Solution

x=1.26330…+2πn,x=2π−1.26330…+2πn,x=1.87828…+2πn,x=−1.87828…+2πn
+1
Degrees
x=72.38207…∘+360∘n,x=287.61792…∘+360∘n,x=107.61792…∘+360∘n,x=−107.61792…∘+360∘n
Solution steps
5cos2(x)=2(1+cos2(x))1​
Solve by substitution
5cos2(x)=2(1+cos2(x))1​
Let: cos(x)=u5u2=2(1+u2)1​
5u2=2(1+u2)1​:u=10−5+35​​​,u=−10−5+35​​​,u=i105+35​​​,u=−i105+35​​​
5u2=2(1+u2)1​
Multiply both sides by 2(1+u2)
5u2=2(1+u2)1​
Multiply both sides by 2(1+u2)5u2⋅2(1+u2)=2(1+u2)1​⋅2(1+u2)
Simplify
5u2⋅2(1+u2)=2(1+u2)1​⋅2(1+u2)
Simplify 5u2⋅2(1+u2):10u2(1+u2)
5u2⋅2(1+u2)
Multiply the numbers: 5⋅2=10=10u2(u2+1)
Simplify 2(1+u2)1​⋅2(1+u2):1
2(1+u2)1​⋅2(1+u2)
Multiply fractions: a⋅cb​=ca⋅b​=2(1+u2)1⋅2(1+u2)​
Cancel the common factor: 2=1+u21⋅(1+u2)​
Cancel the common factor: 1+u2=1
10u2(1+u2)=1
10u2(1+u2)=1
10u2(1+u2)=1
Solve 10u2(1+u2)=1:u=10−5+35​​​,u=−10−5+35​​​,u=i105+35​​​,u=−i105+35​​​
10u2(1+u2)=1
Expand 10u2(1+u2):10u2+10u4
10u2(1+u2)
Apply the distributive law: a(b+c)=ab+aca=10u2,b=1,c=u2=10u2⋅1+10u2u2
=10⋅1⋅u2+10u2u2
Simplify 10⋅1⋅u2+10u2u2:10u2+10u4
10⋅1⋅u2+10u2u2
10⋅1⋅u2=10u2
10⋅1⋅u2
Multiply the numbers: 10⋅1=10=10u2
10u2u2=10u4
10u2u2
Apply exponent rule: ab⋅ac=ab+cu2u2=u2+2=10u2+2
Add the numbers: 2+2=4=10u4
=10u2+10u4
=10u2+10u4
10u2+10u4=1
Move 1to the left side
10u2+10u4=1
Subtract 1 from both sides10u2+10u4−1=1−1
Simplify10u2+10u4−1=0
10u2+10u4−1=0
Write in the standard form an​xn+…+a1​x+a0​=010u4+10u2−1=0
Rewrite the equation with v=u2 and v2=u410v2+10v−1=0
Solve 10v2+10v−1=0:v=10−5+35​​,v=−105+35​​
10v2+10v−1=0
Solve with the quadratic formula
10v2+10v−1=0
Quadratic Equation Formula:
For a=10,b=10,c=−1v1,2​=2⋅10−10±102−4⋅10(−1)​​
v1,2​=2⋅10−10±102−4⋅10(−1)​​
102−4⋅10(−1)​=235​
102−4⋅10(−1)​
Apply rule −(−a)=a=102+4⋅10⋅1​
Multiply the numbers: 4⋅10⋅1=40=102+40​
102=100=100+40​
Add the numbers: 100+40=140=140​
Prime factorization of 140:22⋅5⋅7
140
140divides by 2140=70⋅2=2⋅70
70divides by 270=35⋅2=2⋅2⋅35
35divides by 535=7⋅5=2⋅2⋅5⋅7
2,5,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5⋅7
=22⋅5⋅7
=22⋅5⋅7​
Apply radical rule: =22​5⋅7​
Apply radical rule: 22​=2=25⋅7​
Refine=235​
v1,2​=2⋅10−10±235​​
Separate the solutionsv1​=2⋅10−10+235​​,v2​=2⋅10−10−235​​
v=2⋅10−10+235​​:10−5+35​​
2⋅10−10+235​​
Multiply the numbers: 2⋅10=20=20−10+235​​
Factor −10+235​:2(−5+35​)
−10+235​
Rewrite as=−2⋅5+235​
Factor out common term 2=2(−5+35​)
=202(−5+35​)​
Cancel the common factor: 2=10−5+35​​
v=2⋅10−10−235​​:−105+35​​
2⋅10−10−235​​
Multiply the numbers: 2⋅10=20=20−10−235​​
Factor −10−235​:−2(5+35​)
−10−235​
Rewrite as=−2⋅5−235​
Factor out common term 2=−2(5+35​)
=−202(5+35​)​
Cancel the common factor: 2=−105+35​​
The solutions to the quadratic equation are:v=10−5+35​​,v=−105+35​​
v=10−5+35​​,v=−105+35​​
Substitute back v=u2,solve for u
Solve u2=10−5+35​​:u=10−5+35​​​,u=−10−5+35​​​
u2=10−5+35​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=10−5+35​​​,u=−10−5+35​​​
Solve u2=−105+35​​:u=i105+35​​​,u=−i105+35​​​
u2=−105+35​​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−105+35​​​,u=−−105+35​​​
Simplify −105+35​​​:i105+35​​​
−105+35​​​
Apply radical rule: −a​=−1​a​−105+35​​​=−1​105+35​​​=−1​105+35​​​
Apply imaginary number rule: −1​=i=i105+35​​​
Simplify −−105+35​​​:−i105+35​​​
−−105+35​​​
Simplify −105+35​​​:i105+35​​​
−105+35​​​
Apply radical rule: −a​=−1​a​−105+35​​​=−1​105+35​​​=−1​105+35​​​
Apply imaginary number rule: −1​=i=i105+35​​​
=−i105+35​​​
u=i105+35​​​,u=−i105+35​​​
The solutions are
u=10−5+35​​​,u=−10−5+35​​​,u=i105+35​​​,u=−i105+35​​​
u=10−5+35​​​,u=−10−5+35​​​,u=i105+35​​​,u=−i105+35​​​
Substitute back u=cos(x)cos(x)=10−5+35​​​,cos(x)=−10−5+35​​​,cos(x)=i105+35​​​,cos(x)=−i105+35​​​
cos(x)=10−5+35​​​,cos(x)=−10−5+35​​​,cos(x)=i105+35​​​,cos(x)=−i105+35​​​
cos(x)=10−5+35​​​:x=arccos​10−5+35​​​​+2πn,x=2π−arccos​10−5+35​​​​+2πn
cos(x)=10−5+35​​​
Apply trig inverse properties
cos(x)=10−5+35​​​
General solutions for cos(x)=10−5+35​​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos​10−5+35​​​​+2πn,x=2π−arccos​10−5+35​​​​+2πn
x=arccos​10−5+35​​​​+2πn,x=2π−arccos​10−5+35​​​​+2πn
cos(x)=−10−5+35​​​:x=arccos​−10−5+35​​​​+2πn,x=−arccos​−10−5+35​​​​+2πn
cos(x)=−10−5+35​​​
Apply trig inverse properties
cos(x)=−10−5+35​​​
General solutions for cos(x)=−10−5+35​​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos​−10−5+35​​​​+2πn,x=−arccos​−10−5+35​​​​+2πn
x=arccos​−10−5+35​​​​+2πn,x=−arccos​−10−5+35​​​​+2πn
cos(x)=i105+35​​​:No Solution
cos(x)=i105+35​​​
NoSolution
cos(x)=−i105+35​​​:No Solution
cos(x)=−i105+35​​​
NoSolution
Combine all the solutionsx=arccos​10−5+35​​​​+2πn,x=2π−arccos​10−5+35​​​​+2πn,x=arccos​−10−5+35​​​​+2πn,x=−arccos​−10−5+35​​​​+2πn
Show solutions in decimal formx=1.26330…+2πn,x=2π−1.26330…+2πn,x=1.87828…+2πn,x=−1.87828…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4.72^2=3.3^2+3.3^2-2(3.3)(3.3)cos(x)2sin(x-30)=cos(x-60)2cos(2x)=sin(2x)cos(2x)= 3/4sec(θ)csc(θ)=2csc(θ)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024