Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x-15)=-sin(60-3x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x−15∘)=−sin(60∘−3x)

Solution

x=604320∘n+1980∘​,x=180∘+360∘n−45∘
+1
Radians
x=12511π​​+12524π​​n,x=π−4π​+2πn
Solution steps
cos(2x−15∘)=−sin(60∘−3x)
Rewrite using trig identities
cos(2x−15∘)=−sin(60∘−3x)
Use the following identity: −sin(x)=sin(−x)cos(2x−15∘)=sin(−(60∘−3x))
Use the following identity: cos(x)=sin(90∘−x)cos(2x−15∘)=sin(90∘−(2x−15∘))
cos(2x−15∘)=sin(90∘−(2x−15∘))
Apply trig inverse properties
cos(2x−15∘)=sin(90∘−(2x−15∘))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn−(60∘−3x)=90∘−(2x−15∘)+360∘n,−(60∘−3x)=180∘−(90∘−(2x−15∘))+360∘n
−(60∘−3x)=90∘−(2x−15∘)+360∘n,−(60∘−3x)=180∘−(90∘−(2x−15∘))+360∘n
−(60∘−3x)=90∘−(2x−15∘)+360∘n:x=604320∘n+1980∘​
−(60∘−3x)=90∘−(2x−15∘)+360∘n
Expand −(60∘−3x):−60∘+3x
−(60∘−3x)
Distribute parentheses=−(60∘)−(−3x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−60∘+3x
Expand 90∘−(2x−15∘)+360∘n:−2x+360∘n+105∘
90∘−(2x−15∘)+360∘n
−(2x−15∘):−2x+15∘
−(2x−15∘)
Distribute parentheses=−(2x)−(−15∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x+15∘
=90∘−2x+15∘+360∘n
Simplify 90∘−2x+15∘+360∘n:−2x+360∘n+105∘
90∘−2x+15∘+360∘n
Group like terms=−2x+360∘n+90∘+15∘
Least Common Multiplier of 2,12:12
2,12
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 12=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 90∘:multiply the denominator and numerator by 690∘=2⋅6180∘6​=90∘
=90∘+15∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12180∘6+180∘​
Add similar elements: 1080∘+180∘=1260∘=−2x+360∘n+105∘
=−2x+360∘n+105∘
−60∘+3x=−2x+360∘n+105∘
Move 60∘to the right side
−60∘+3x=−2x+360∘n+105∘
Add 60∘ to both sides−60∘+3x+60∘=−2x+360∘n+105∘+60∘
Simplify
−60∘+3x+60∘=−2x+360∘n+105∘+60∘
Simplify −60∘+3x+60∘:3x
−60∘+3x+60∘
Add similar elements: −60∘+60∘=0
=3x
Simplify −2x+360∘n+105∘+60∘:−2x+360∘n+165∘
−2x+360∘n+105∘+60∘
Least Common Multiplier of 12,3:12
12,3
Least Common Multiplier (LCM)
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 12 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 60∘:multiply the denominator and numerator by 460∘=3⋅4180∘4​=60∘
=105∘+60∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=121260∘+180∘4​
Add similar elements: 1260∘+720∘=1980∘=−2x+360∘n+165∘
3x=−2x+360∘n+165∘
3x=−2x+360∘n+165∘
3x=−2x+360∘n+165∘
Move 2xto the left side
3x=−2x+360∘n+165∘
Add 2x to both sides3x+2x=−2x+360∘n+165∘+2x
Simplify5x=360∘n+165∘
5x=360∘n+165∘
Divide both sides by 5
5x=360∘n+165∘
Divide both sides by 555x​=5360∘n​+5165∘​
Simplify
55x​=5360∘n​+5165∘​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 5360∘n​+5165∘​:604320∘n+1980∘​
5360∘n​+5165∘​
Apply rule ca​±cb​=ca±b​=5360∘n+165∘​
Join 360∘n+165∘:124320∘n+1980∘​
360∘n+165∘
Convert element to fraction: 360∘n=12360∘n12​=12360∘n⋅12​+165∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12360∘n⋅12+1980∘​
Multiply the numbers: 2⋅12=24=124320∘n+1980∘​
=5124320∘n+1980∘​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅54320∘n+1980∘​
Multiply the numbers: 12⋅5=60=604320∘n+1980∘​
x=604320∘n+1980∘​
x=604320∘n+1980∘​
x=604320∘n+1980∘​
−(60∘−3x)=180∘−(90∘−(2x−15∘))+360∘n:x=180∘+360∘n−45∘
−(60∘−3x)=180∘−(90∘−(2x−15∘))+360∘n
Expand −(60∘−3x):−60∘+3x
−(60∘−3x)
Distribute parentheses=−(60∘)−(−3x)
Apply minus-plus rules−(−a)=a,−(a)=−a=−60∘+3x
Expand 180∘−(90∘−(2x−15∘))+360∘n:180∘+2x−105∘+360∘n
180∘−(90∘−(2x−15∘))+360∘n
Expand 90∘−(2x−15∘):−2x+105∘
90∘−(2x−15∘)
−(2x−15∘):−2x+15∘
−(2x−15∘)
Distribute parentheses=−(2x)−(−15∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2x+15∘
=90∘−2x+15∘
Simplify 90∘−2x+15∘:−2x+105∘
90∘−2x+15∘
Group like terms=−2x+90∘+15∘
Least Common Multiplier of 2,12:12
2,12
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 12=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 90∘:multiply the denominator and numerator by 690∘=2⋅6180∘6​=90∘
=90∘+15∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12180∘6+180∘​
Add similar elements: 1080∘+180∘=1260∘=−2x+105∘
=−2x+105∘
=180∘−(−2x+105∘)+360∘n
−(−2x+105∘):2x−105∘
−(−2x+105∘)
Distribute parentheses=−(−2x)−(105∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=2x−105∘
=180∘+2x−105∘+360∘n
−60∘+3x=180∘+2x−105∘+360∘n
Move 60∘to the right side
−60∘+3x=180∘+2x−105∘+360∘n
Add 60∘ to both sides−60∘+3x+60∘=180∘+2x−105∘+360∘n+60∘
Simplify
−60∘+3x+60∘=180∘+2x−105∘+360∘n+60∘
Simplify −60∘+3x+60∘:3x
−60∘+3x+60∘
Add similar elements: −60∘+60∘=0
=3x
Simplify 180∘+2x−105∘+360∘n+60∘:2x+180∘+360∘n−45∘
180∘+2x−105∘+360∘n+60∘
Group like terms=2x+180∘+360∘n+60∘−105∘
Least Common Multiplier of 3,12:12
3,12
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 12=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 60∘:multiply the denominator and numerator by 460∘=3⋅4180∘4​=60∘
=60∘−105∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12180∘4−1260∘​
Add similar elements: 720∘−1260∘=−540∘=12−540∘​
Apply the fraction rule: b−a​=−ba​=−45∘
Cancel the common factor: 3=2x+180∘+360∘n−45∘
3x=2x+180∘+360∘n−45∘
3x=2x+180∘+360∘n−45∘
3x=2x+180∘+360∘n−45∘
Move 2xto the left side
3x=2x+180∘+360∘n−45∘
Subtract 2x from both sides3x−2x=2x+180∘+360∘n−45∘−2x
Simplifyx=180∘+360∘n−45∘
x=180∘+360∘n−45∘
x=604320∘n+1980∘​,x=180∘+360∘n−45∘
x=604320∘n+1980∘​,x=180∘+360∘n−45∘

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin^2(x)-cos(x)-1=02sin^2(x)+sin(x)-6=0tan(θ)= 8/15 ,sin(θ)>0cos(x)=(86.6)/(100)-6sin(θ)=-3sqrt(3)

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(2x-15)=-sin(60-3x) ?

    The general solution for cos(2x-15)=-sin(60-3x) is x=(4320n+1980)/(60),x=180+360n-45
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024