Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cot^2(y-pi/4)=1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cot2(y−4π​)=1

Solution

y=πn+127π​,y=πn+1211π​
+1
Degrees
y=105∘+180∘n,y=165∘+180∘n
Solution steps
3cot2(y−4π​)=1
Solve by substitution
3cot2(y−4π​)=1
Let: cot(y−4π​)=u3u2=1
3u2=1:u=31​​,u=−31​​
3u2=1
Divide both sides by 3
3u2=1
Divide both sides by 333u2​=31​
Simplifyu2=31​
u2=31​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=31​​,u=−31​​
Substitute back u=cot(y−4π​)cot(y−4π​)=31​​,cot(y−4π​)=−31​​
cot(y−4π​)=31​​,cot(y−4π​)=−31​​
cot(y−4π​)=31​​:y=πn+127π​
cot(y−4π​)=31​​
Apply trig inverse properties
cot(y−4π​)=31​​
General solutions for cot(y−4π​)=31​​cot(x)=a⇒x=arccot(a)+πny−4π​=arccot(31​​)+πn
y−4π​=arccot(31​​)+πn
Solve y−4π​=arccot(31​​)+πn:y=πn+127π​
y−4π​=arccot(31​​)+πn
Simplify arccot(31​​)+πn:3π​+πn
arccot(31​​)+πn
Use the following trivial identity:arccot(31​​)=3π​x−3​−1−33​​033​​13​​arccot(x)65π​43π​32π​2π​3π​4π​6π​​arccot(x)150∘135∘120∘90∘60∘45∘30∘​​=3π​+πn
y−4π​=3π​+πn
Move 4π​to the right side
y−4π​=3π​+πn
Add 4π​ to both sidesy−4π​+4π​=3π​+πn+4π​
Simplify
y−4π​+4π​=3π​+πn+4π​
Simplify y−4π​+4π​:y
y−4π​+4π​
Add similar elements: −4π​+4π​=0
=y
Simplify 3π​+πn+4π​:πn+127π​
3π​+πn+4π​
Group like terms=πn+3π​+4π​
Least Common Multiplier of 3,4:12
3,4
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 3 or 4=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
=12π4​+12π3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π4+π3​
Add similar elements: 4π+3π=7π=πn+127π​
y=πn+127π​
y=πn+127π​
y=πn+127π​
y=πn+127π​
cot(y−4π​)=−31​​:y=πn+1211π​
cot(y−4π​)=−31​​
Apply trig inverse properties
cot(y−4π​)=−31​​
General solutions for cot(y−4π​)=−31​​cot(x)=−a⇒x=arccot(−a)+πny−4π​=arccot(−31​​)+πn
y−4π​=arccot(−31​​)+πn
Solve y−4π​=arccot(−31​​)+πn:y=πn+1211π​
y−4π​=arccot(−31​​)+πn
Simplify arccot(−31​​)+πn:32π​+πn
arccot(−31​​)+πn
Use the following trivial identity:arccot(−31​​)=32π​x−3​−1−33​​033​​13​​arccot(x)65π​43π​32π​2π​3π​4π​6π​​arccot(x)150∘135∘120∘90∘60∘45∘30∘​​=32π​+πn
y−4π​=32π​+πn
Move 4π​to the right side
y−4π​=32π​+πn
Add 4π​ to both sidesy−4π​+4π​=32π​+πn+4π​
Simplify
y−4π​+4π​=32π​+πn+4π​
Simplify y−4π​+4π​:y
y−4π​+4π​
Add similar elements: −4π​+4π​=0
=y
Simplify 32π​+πn+4π​:πn+1211π​
32π​+πn+4π​
Group like terms=πn+4π​+32π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 32π​:multiply the denominator and numerator by 432π​=3⋅42π4​=128π​
=12π3​+128π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3+8π​
Add similar elements: 3π+8π=11π=πn+1211π​
y=πn+1211π​
y=πn+1211π​
y=πn+1211π​
y=πn+1211π​
Combine all the solutionsy=πn+127π​,y=πn+1211π​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(t)=-5/1390-70sin(x)-130cos(x)=02sin(x)sec(x)-2sqrt(3)sin(x)=0cot(a)sec(a)=cos(a)4sin^2(x)=4cos(x)+1

Frequently Asked Questions (FAQ)

  • What is the general solution for 3cot^2(y-pi/4)=1 ?

    The general solution for 3cot^2(y-pi/4)=1 is y=pin+(7pi)/(12),y=pin+(11pi)/(12)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024