Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

90-70sin(x)-130cos(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

90−70sin(x)−130cos(x)=0

Solution

x=1.40923…+2πn,x=−0.42135…+2πn
+1
Degrees
x=80.74328…∘+360∘n,x=−24.14177…∘+360∘n
Solution steps
90−70sin(x)−130cos(x)=0
Add 130cos(x) to both sides90−70sin(x)=130cos(x)
Square both sides(90−70sin(x))2=(130cos(x))2
Subtract (130cos(x))2 from both sides(90−70sin(x))2−16900cos2(x)=0
Rewrite using trig identities
(90−70sin(x))2−16900cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(90−70sin(x))2−16900(1−sin2(x))
Simplify (90−70sin(x))2−16900(1−sin2(x)):21800sin2(x)−12600sin(x)−8800
(90−70sin(x))2−16900(1−sin2(x))
(90−70sin(x))2:8100−12600sin(x)+4900sin2(x)
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=90,b=70sin(x)
=902−2⋅90⋅70sin(x)+(70sin(x))2
Simplify 902−2⋅90⋅70sin(x)+(70sin(x))2:8100−12600sin(x)+4900sin2(x)
902−2⋅90⋅70sin(x)+(70sin(x))2
902=8100
902
902=8100=8100
2⋅90⋅70sin(x)=12600sin(x)
2⋅90⋅70sin(x)
Multiply the numbers: 2⋅90⋅70=12600=12600sin(x)
(70sin(x))2=4900sin2(x)
(70sin(x))2
Apply exponent rule: (a⋅b)n=anbn=702sin2(x)
702=4900=4900sin2(x)
=8100−12600sin(x)+4900sin2(x)
=8100−12600sin(x)+4900sin2(x)
=8100−12600sin(x)+4900sin2(x)−16900(1−sin2(x))
Expand −16900(1−sin2(x)):−16900+16900sin2(x)
−16900(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−16900,b=1,c=sin2(x)=−16900⋅1−(−16900)sin2(x)
Apply minus-plus rules−(−a)=a=−16900⋅1+16900sin2(x)
Multiply the numbers: 16900⋅1=16900=−16900+16900sin2(x)
=8100−12600sin(x)+4900sin2(x)−16900+16900sin2(x)
Simplify 8100−12600sin(x)+4900sin2(x)−16900+16900sin2(x):21800sin2(x)−12600sin(x)−8800
8100−12600sin(x)+4900sin2(x)−16900+16900sin2(x)
Group like terms=−12600sin(x)+4900sin2(x)+16900sin2(x)+8100−16900
Add similar elements: 4900sin2(x)+16900sin2(x)=21800sin2(x)=−12600sin(x)+21800sin2(x)+8100−16900
Add/Subtract the numbers: 8100−16900=−8800=21800sin2(x)−12600sin(x)−8800
=21800sin2(x)−12600sin(x)−8800
=21800sin2(x)−12600sin(x)−8800
−8800−12600sin(x)+21800sin2(x)=0
Solve by substitution
−8800−12600sin(x)+21800sin2(x)=0
Let: sin(x)=u−8800−12600u+21800u2=0
−8800−12600u+21800u2=0:u=21863+13137​​,u=21863−13137​​
−8800−12600u+21800u2=0
Divide both sides by 21800−218008800​−2180012600u​+2180021800u2​=218000​
Write in the standard form ax2+bx+c=0u2−10963u​−10944​=0
Solve with the quadratic formula
u2−10963u​−10944​=0
Quadratic Equation Formula:
For a=1,b=−10963​,c=−10944​u1,2​=2⋅1−(−10963​)±(−10963​)2−4⋅1⋅(−10944​)​​
u1,2​=2⋅1−(−10963​)±(−10963​)2−4⋅1⋅(−10944​)​​
(−10963​)2−4⋅1⋅(−10944​)​=10913137​​
(−10963​)2−4⋅1⋅(−10944​)​
Apply rule −(−a)=a=(−10963​)2+4⋅1⋅10944​​
(−10963​)2=1092632​
(−10963​)2
Apply exponent rule: (−a)n=an,if n is even(−10963​)2=(10963​)2=(10963​)2
Apply exponent rule: (ba​)c=bcac​=1092632​
4⋅1⋅10944​=109176​
4⋅1⋅10944​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅10944⋅4​
Multiply the numbers: 44⋅4=176=1⋅109176​
Multiply: 1⋅109176​=109176​=109176​
=1092632​+109176​​
1092632​=118813969​
1092632​
632=3969=10923969​
1092=11881=118813969​
=118813969​+109176​​
Join 118813969​+109176​:1188123153​
118813969​+109176​
Least Common Multiplier of 11881,109:11881
11881,109
Least Common Multiplier (LCM)
Prime factorization of 11881:109⋅109
11881
11881divides by 10911881=109⋅109=109⋅109
Prime factorization of 109:109
109
109 is a prime number, therefore no factorization is possible=109
Multiply each factor the greatest number of times it occurs in either 11881 or 109=109⋅109
Multiply the numbers: 109⋅109=11881=11881
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 11881
For 109176​:multiply the denominator and numerator by 109109176​=109⋅109176⋅109​=1188119184​
=118813969​+1188119184​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=118813969+19184​
Add the numbers: 3969+19184=23153=1188123153​
=1188123153​​
Apply radical rule: assuming a≥0,b≥0=11881​23153​​
11881​=109
11881​
Factor the number: 11881=1092=1092​
Apply radical rule: 1092​=109=109
=10923153​​
23153​=13137​
23153​
Prime factorization of 23153:132⋅137
23153
23153divides by 1323153=1781⋅13=13⋅1781
1781divides by 131781=137⋅13=13⋅13⋅137
13,137 are all prime numbers, therefore no further factorization is possible=13⋅13⋅137
=132⋅137
=132⋅137​
Apply radical rule: =137​132​
Apply radical rule: 132​=13=13137​
=10913137​​
u1,2​=2⋅1−(−10963​)±10913137​​​
Separate the solutionsu1​=2⋅1−(−10963​)+10913137​​​,u2​=2⋅1−(−10963​)−10913137​​​
u=2⋅1−(−10963​)+10913137​​​:21863+13137​​
2⋅1−(−10963​)+10913137​​​
Apply rule −(−a)=a=2⋅110963​+10913137​​​
Multiply the numbers: 2⋅1=2=210963​+10913137​​​
Combine the fractions 10963​+10913137​​:10963+13137​​
Apply rule ca​±cb​=ca±b​=10963+13137​​
=210963+13137​​​
Apply the fraction rule: acb​​=c⋅ab​=109⋅263+13137​​
Multiply the numbers: 109⋅2=218=21863+13137​​
u=2⋅1−(−10963​)−10913137​​​:21863−13137​​
2⋅1−(−10963​)−10913137​​​
Apply rule −(−a)=a=2⋅110963​−10913137​​​
Multiply the numbers: 2⋅1=2=210963​−10913137​​​
Combine the fractions 10963​−10913137​​:10963−13137​​
Apply rule ca​±cb​=ca±b​=10963−13137​​
=210963−13137​​​
Apply the fraction rule: acb​​=c⋅ab​=109⋅263−13137​​
Multiply the numbers: 109⋅2=218=21863−13137​​
The solutions to the quadratic equation are:u=21863+13137​​,u=21863−13137​​
Substitute back u=sin(x)sin(x)=21863+13137​​,sin(x)=21863−13137​​
sin(x)=21863+13137​​,sin(x)=21863−13137​​
sin(x)=21863+13137​​:x=arcsin(21863+13137​​)+2πn,x=π−arcsin(21863+13137​​)+2πn
sin(x)=21863+13137​​
Apply trig inverse properties
sin(x)=21863+13137​​
General solutions for sin(x)=21863+13137​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(21863+13137​​)+2πn,x=π−arcsin(21863+13137​​)+2πn
x=arcsin(21863+13137​​)+2πn,x=π−arcsin(21863+13137​​)+2πn
sin(x)=21863−13137​​:x=arcsin(21863−13137​​)+2πn,x=π+arcsin(−21863−13137​​)+2πn
sin(x)=21863−13137​​
Apply trig inverse properties
sin(x)=21863−13137​​
General solutions for sin(x)=21863−13137​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(21863−13137​​)+2πn,x=π+arcsin(−21863−13137​​)+2πn
x=arcsin(21863−13137​​)+2πn,x=π+arcsin(−21863−13137​​)+2πn
Combine all the solutionsx=arcsin(21863+13137​​)+2πn,x=π−arcsin(21863+13137​​)+2πn,x=arcsin(21863−13137​​)+2πn,x=π+arcsin(−21863−13137​​)+2πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into 90−70sin(x)−130cos(x)=0
Remove the ones that don't agree with the equation.
Check the solution arcsin(21863+13137​​)+2πn:True
arcsin(21863+13137​​)+2πn
Plug in n=1arcsin(21863+13137​​)+2π1
For 90−70sin(x)−130cos(x)=0plug inx=arcsin(21863+13137​​)+2π190−70sin(arcsin(21863+13137​​)+2π1)−130cos(arcsin(21863+13137​​)+2π1)=0
Refine0=0
⇒True
Check the solution π−arcsin(21863+13137​​)+2πn:False
π−arcsin(21863+13137​​)+2πn
Plug in n=1π−arcsin(21863+13137​​)+2π1
For 90−70sin(x)−130cos(x)=0plug inx=π−arcsin(21863+13137​​)+2π190−70sin(π−arcsin(21863+13137​​)+2π1)−130cos(π−arcsin(21863+13137​​)+2π1)=0
Refine41.82314…=0
⇒False
Check the solution arcsin(21863−13137​​)+2πn:True
arcsin(21863−13137​​)+2πn
Plug in n=1arcsin(21863−13137​​)+2π1
For 90−70sin(x)−130cos(x)=0plug inx=arcsin(21863−13137​​)+2π190−70sin(arcsin(21863−13137​​)+2π1)−130cos(arcsin(21863−13137​​)+2π1)=0
Refine0=0
⇒True
Check the solution π+arcsin(−21863−13137​​)+2πn:False
π+arcsin(−21863−13137​​)+2πn
Plug in n=1π+arcsin(−21863−13137​​)+2π1
For 90−70sin(x)−130cos(x)=0plug inx=π+arcsin(−21863−13137​​)+2π190−70sin(π+arcsin(−21863−13137​​)+2π1)−130cos(π+arcsin(−21863−13137​​)+2π1)=0
Refine237.25942…=0
⇒False
x=arcsin(21863+13137​​)+2πn,x=arcsin(21863−13137​​)+2πn
Show solutions in decimal formx=1.40923…+2πn,x=−0.42135…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)sec(x)-2sqrt(3)sin(x)=0cot(a)sec(a)=cos(a)4sin^2(x)=4cos(x)+12tan^2(x)+3tan(x)-2=0sin(x)=-3cos(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for 90-70sin(x)-130cos(x)=0 ?

    The general solution for 90-70sin(x)-130cos(x)=0 is x=1.40923…+2pin,x=-0.42135…+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024