Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4sin^2(x)=8sin^2(x/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4sin2(x)=8sin2(2x​)

Solution

x=4πn,x=2π+4πn,x=23π​+4πn,x=25π​+4πn,x=2π​+4πn,x=27π​+4πn
+1
Degrees
x=0∘+720∘n,x=360∘+720∘n,x=270∘+720∘n,x=450∘+720∘n,x=90∘+720∘n,x=630∘+720∘n
Solution steps
4sin2(x)=8sin2(2x​)
Subtract 8sin2(2x​) from both sides4sin2(x)−8sin2(2x​)=0
Let: u=2x​4sin2(2u)−8sin2(u)=0
Factor 4sin2(2u)−8sin2(u):4(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))
4sin2(2u)−8sin2(u)
Rewrite −8 as 2⋅4=4sin2(2u)+2⋅4sin2(u)
Factor out common term 4=4(sin2(2u)−2sin2(u))
Factor sin2(2u)−2sin2(u):(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))
sin2(2u)−2sin2(u)
Rewrite sin2(2u)−2sin2(u) as sin2(2u)−(2​sin(u))2
sin2(2u)−2sin2(u)
Apply radical rule: a=(a​)22=(2​)2=sin2(2u)−(2​)2sin2(u)
Apply exponent rule: ambm=(ab)m(2​)2sin2(u)=(2​sin(u))2=sin2(2u)−(2​sin(u))2
=sin2(2u)−(2​sin(u))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sin2(2u)−(2​sin(u))2=(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))=(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))
=4(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))
4(sin(2u)+2​sin(u))(sin(2u)−2​sin(u))=0
Solving each part separatelysin(2u)+2​sin(u)=0orsin(2u)−2​sin(u)=0
sin(2u)+2​sin(u)=0:u=2πn,u=π+2πn,u=43π​+2πn,u=45π​+2πn
sin(2u)+2​sin(u)=0
Rewrite using trig identities
sin(2u)+sin(u)2​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(u)cos(u)+2​sin(u)
sin(u)2​+2cos(u)sin(u)=0
Factor sin(u)2​+2cos(u)sin(u):sin(u)(2​+2cos(u))
sin(u)2​+2cos(u)sin(u)
Factor out common term sin(u)=sin(u)(2​+2cos(u))
sin(u)(2​+2cos(u))=0
Solving each part separatelysin(u)=0or2​+2cos(u)=0
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
2​+2cos(u)=0:u=43π​+2πn,u=45π​+2πn
2​+2cos(u)=0
Move 2​to the right side
2​+2cos(u)=0
Subtract 2​ from both sides2​+2cos(u)−2​=0−2​
Simplify2cos(u)=−2​
2cos(u)=−2​
Divide both sides by 2
2cos(u)=−2​
Divide both sides by 222cos(u)​=2−2​​
Simplifycos(u)=−22​​
cos(u)=−22​​
General solutions for cos(u)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=43π​+2πn,u=45π​+2πn
u=43π​+2πn,u=45π​+2πn
Combine all the solutionsu=2πn,u=π+2πn,u=43π​+2πn,u=45π​+2πn
sin(2u)−2​sin(u)=0:u=2πn,u=π+2πn,u=4π​+2πn,u=47π​+2πn
sin(2u)−2​sin(u)=0
Rewrite using trig identities
sin(2u)−sin(u)2​
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2sin(u)cos(u)−2​sin(u)
−sin(u)2​+2cos(u)sin(u)=0
Factor −sin(u)2​+2cos(u)sin(u):sin(u)(−2​+2cos(u))
−sin(u)2​+2cos(u)sin(u)
Factor out common term sin(u)=sin(u)(−2​+2cos(u))
sin(u)(−2​+2cos(u))=0
Solving each part separatelysin(u)=0or−2​+2cos(u)=0
sin(u)=0:u=2πn,u=π+2πn
sin(u)=0
General solutions for sin(u)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
u=0+2πn,u=π+2πn
u=0+2πn,u=π+2πn
Solve u=0+2πn:u=2πn
u=0+2πn
0+2πn=2πnu=2πn
u=2πn,u=π+2πn
−2​+2cos(u)=0:u=4π​+2πn,u=47π​+2πn
−2​+2cos(u)=0
Move 2​to the right side
−2​+2cos(u)=0
Add 2​ to both sides−2​+2cos(u)+2​=0+2​
Simplify2cos(u)=2​
2cos(u)=2​
Divide both sides by 2
2cos(u)=2​
Divide both sides by 222cos(u)​=22​​
Simplifycos(u)=22​​
cos(u)=22​​
General solutions for cos(u)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=4π​+2πn,u=47π​+2πn
u=4π​+2πn,u=47π​+2πn
Combine all the solutionsu=2πn,u=π+2πn,u=4π​+2πn,u=47π​+2πn
Combine all the solutionsu=2πn,u=π+2πn,u=43π​+2πn,u=45π​+2πn,u=4π​+2πn,u=47π​+2πn
Substitute back u=2x​
2x​=2πn:x=4πn
2x​=2πn
Multiply both sides by 2
2x​=2πn
Multiply both sides by 222x​=2⋅2πn
Simplifyx=4πn
x=4πn
2x​=π+2πn:x=2π+4πn
2x​=π+2πn
Multiply both sides by 2
2x​=π+2πn
Multiply both sides by 222x​=2π+2⋅2πn
Simplifyx=2π+4πn
x=2π+4πn
2x​=43π​+2πn:x=23π​+4πn
2x​=43π​+2πn
Multiply both sides by 2
2x​=43π​+2πn
Multiply both sides by 222x​=2⋅43π​+2⋅2πn
Simplify
22x​=2⋅43π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅43π​+2⋅2πn:23π​+4πn
2⋅43π​+2⋅2πn
2⋅43π​=23π​
2⋅43π​
Multiply fractions: a⋅cb​=ca⋅b​=43π2​
Multiply the numbers: 3⋅2=6=46π​
Cancel the common factor: 2=23π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=23π​+4πn
x=23π​+4πn
x=23π​+4πn
x=23π​+4πn
2x​=45π​+2πn:x=25π​+4πn
2x​=45π​+2πn
Multiply both sides by 2
2x​=45π​+2πn
Multiply both sides by 222x​=2⋅45π​+2⋅2πn
Simplify
22x​=2⋅45π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅45π​+2⋅2πn:25π​+4πn
2⋅45π​+2⋅2πn
2⋅45π​=25π​
2⋅45π​
Multiply fractions: a⋅cb​=ca⋅b​=45π2​
Multiply the numbers: 5⋅2=10=410π​
Cancel the common factor: 2=25π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=25π​+4πn
x=25π​+4πn
x=25π​+4πn
x=25π​+4πn
2x​=4π​+2πn:x=2π​+4πn
2x​=4π​+2πn
Multiply both sides by 2
2x​=4π​+2πn
Multiply both sides by 222x​=2⋅4π​+2⋅2πn
Simplify
22x​=2⋅4π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅4π​+2⋅2πn:2π​+4πn
2⋅4π​+2⋅2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=2π​+4πn
x=2π​+4πn
x=2π​+4πn
x=2π​+4πn
2x​=47π​+2πn:x=27π​+4πn
2x​=47π​+2πn
Multiply both sides by 2
2x​=47π​+2πn
Multiply both sides by 222x​=2⋅47π​+2⋅2πn
Simplify
22x​=2⋅47π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅47π​+2⋅2πn:27π​+4πn
2⋅47π​+2⋅2πn
2⋅47π​=27π​
2⋅47π​
Multiply fractions: a⋅cb​=ca⋅b​=47π2​
Multiply the numbers: 7⋅2=14=414π​
Cancel the common factor: 2=27π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=27π​+4πn
x=27π​+4πn
x=27π​+4πn
x=27π​+4πn
x=4πn,x=2π+4πn,x=23π​+4πn,x=25π​+4πn,x=2π​+4πn,x=27π​+4πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(pi/2-x)=01sin(45)=2.42sin(r)sec(x)=4sin(x)sinh(npi)=03sin^2(θ)+2cos(2θ)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024