Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1+cot^2(x)=8sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+cot2(x)=8sin(x)

Solution

x=6π​+2πn,x=65π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n
Solution steps
1+cot2(x)=8sin(x)
Subtract 8sin(x) from both sides1+cot2(x)−8sin(x)=0
Rewrite using trig identities
1+cot2(x)−8sin(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=1+(sin(x)cos(x)​)2−8sin(x)
Apply exponent rule: (ba​)c=bcac​=1+sin2(x)cos2(x)​−8sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1+sin2(x)1−sin2(x)​−8sin(x)
1+sin2(x)1−sin2(x)​−8sin(x)=0
Solve by substitution
1+sin2(x)1−sin2(x)​−8sin(x)=0
Let: sin(x)=u1+u21−u2​−8u=0
1+u21−u2​−8u=0:u=21​,u=−41​+i43​​,u=−41​−i43​​
1+u21−u2​−8u=0
Multiply both sides by u2
1+u21−u2​−8u=0
Multiply both sides by u21⋅u2+u21−u2​u2−8uu2=0⋅u2
Simplify
1⋅u2+u21−u2​u2−8uu2=0⋅u2
Simplify 1⋅u2:u2
1⋅u2
Multiply: 1⋅u2=u2=u2
Simplify u21−u2​u2:1−u2
u21−u2​u2
Multiply fractions: a⋅cb​=ca⋅b​=u2(1−u2)u2​
Cancel the common factor: u2=1−u2
Simplify −8uu2:−8u3
−8uu2
Apply exponent rule: ab⋅ac=ab+cuu2=u1+2=−8u1+2
Add the numbers: 1+2=3=−8u3
Simplify 0⋅u2:0
0⋅u2
Apply rule 0⋅a=0=0
u2+1−u2−8u3=0
Simplify u2+1−u2−8u3:−8u3+1
u2+1−u2−8u3
Group like terms=−8u3+u2−u2+1
Add similar elements: u2−u2=0=−8u3+1
−8u3+1=0
−8u3+1=0
−8u3+1=0
Solve −8u3+1=0:u=21​,u=−41​+i43​​,u=−41​−i43​​
−8u3+1=0
Move 1to the right side
−8u3+1=0
Subtract 1 from both sides−8u3+1−1=0−1
Simplify−8u3=−1
−8u3=−1
Divide both sides by −8
−8u3=−1
Divide both sides by −8−8−8u3​=−8−1​
Simplifyu3=81​
u3=81​
For x3=f(a) the solutions are
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
Simplify
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
=21​⋅2−1+3​i​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅(−1+3​i)​
1⋅(−1+3​i)=−1+3​i
1⋅(−1+3​i)
Multiply: 1⋅(−1+3​i)=(−1+3​i)=(−1+3​i)
Remove parentheses: (−a)=−a=−1+3​i
=2⋅2−1+3​i​
Multiply the numbers: 2⋅2=4=4−1+3​i​
Rewrite 4−1+3​i​ in standard complex form: −41​+43​​i
4−1+3​i​
Apply the fraction rule: ca±b​=ca​±cb​4−1+3​i​=−41​+43​i​=−41​+43​i​
=−41​+43​​i
Simplify
Apply radical rule: assuming a≥0,b≥0
Factor the number: 8=23
Apply radical rule: =2
Apply rule =21​
=21​⋅2−1−3​i​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅21⋅(−1−3​i)​
1⋅(−1−3​i)=−1−3​i
1⋅(−1−3​i)
Multiply: 1⋅(−1−3​i)=(−1−3​i)=(−1−3​i)
Remove parentheses: (−a)=−a=−1−3​i
=2⋅2−1−3​i​
Multiply the numbers: 2⋅2=4=4−1−3​i​
Rewrite 4−1−3​i​ in standard complex form: −41​−43​​i
4−1−3​i​
Apply the fraction rule: ca±b​=ca​±cb​4−1−3​i​=−41​−43​i​=−41​−43​i​
=−41​−43​​i
u=21​,u=−41​+i43​​,u=−41​−i43​​
u=21​,u=−41​+i43​​,u=−41​−i43​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1+u21−u2​−8u and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=21​,u=−41​+i43​​,u=−41​−i43​​
Substitute back u=sin(x)sin(x)=21​,sin(x)=−41​+i43​​,sin(x)=−41​−i43​​
sin(x)=21​,sin(x)=−41​+i43​​,sin(x)=−41​−i43​​
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−41​+i43​​:No Solution
sin(x)=−41​+i43​​
NoSolution
sin(x)=−41​−i43​​:No Solution
sin(x)=−41​−i43​​
NoSolution
Combine all the solutionsx=6π​+2πn,x=65π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4sin^2(x)=8sin^2(x/2)cos(pi/2-x)=01sin(45)=2.42sin(r)sec(x)=4sin(x)sinh(npi)=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 1+cot^2(x)=8sin(x) ?

    The general solution for 1+cot^2(x)=8sin(x) is x= pi/6+2pin,x=(5pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024