Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)sin(x)-(sin(x))/3 =0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)sin(x)−3sin(x)​=0

Solution

x=2πn,x=π+2πn,x=65π​+πn,x=6π​+πn
+1
Degrees
x=0∘+360∘n,x=180∘+360∘n,x=150∘+180∘n,x=30∘+180∘n
Solution steps
tan2(x)sin(x)−3sin(x)​=0
Simplify tan2(x)sin(x)−3sin(x)​:33tan2(x)sin(x)−sin(x)​
tan2(x)sin(x)−3sin(x)​
Convert element to fraction: tan2(x)sin(x)=3tan2(x)sin(x)3​=3tan2(x)sin(x)⋅3​−3sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3tan2(x)sin(x)⋅3−sin(x)​
33tan2(x)sin(x)−sin(x)​=0
g(x)f(x)​=0⇒f(x)=03tan2(x)sin(x)−sin(x)=0
Factor 3tan2(x)sin(x)−sin(x):sin(x)(3​tan(x)+1)(3​tan(x)−1)
3tan2(x)sin(x)−sin(x)
Factor out common term sin(x)=sin(x)(3tan2(x)−1)
Factor 3tan2(x)−1:(3​tan(x)+1)(3​tan(x)−1)
3tan2(x)−1
Rewrite 3tan2(x)−1 as (3​tan(x))2−12
3tan2(x)−1
Apply radical rule: a=(a​)23=(3​)2=(3​)2tan2(x)−1
Rewrite 1 as 12=(3​)2tan2(x)−12
Apply exponent rule: ambm=(ab)m(3​)2tan2(x)=(3​tan(x))2=(3​tan(x))2−12
=(3​tan(x))2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(3​tan(x))2−12=(3​tan(x)+1)(3​tan(x)−1)=(3​tan(x)+1)(3​tan(x)−1)
=sin(x)(3​tan(x)+1)(3​tan(x)−1)
sin(x)(3​tan(x)+1)(3​tan(x)−1)=0
Solving each part separatelysin(x)=0or3​tan(x)+1=0or3​tan(x)−1=0
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
3​tan(x)+1=0:x=65π​+πn
3​tan(x)+1=0
Move 1to the right side
3​tan(x)+1=0
Subtract 1 from both sides3​tan(x)+1−1=0−1
Simplify3​tan(x)=−1
3​tan(x)=−1
Divide both sides by 3​
3​tan(x)=−1
Divide both sides by 3​3​3​tan(x)​=3​−1​
Simplify
3​3​tan(x)​=3​−1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​−1​:−33​​
3​−1​
Apply the fraction rule: b−a​=−ba​=−3​1​
Rationalize −3​1​:−33​​
−3​1​
Multiply by the conjugate 3​3​​=−3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−33​​
=−33​​
tan(x)=−33​​
tan(x)=−33​​
tan(x)=−33​​
General solutions for tan(x)=−33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=65π​+πn
x=65π​+πn
3​tan(x)−1=0:x=6π​+πn
3​tan(x)−1=0
Move 1to the right side
3​tan(x)−1=0
Add 1 to both sides3​tan(x)−1+1=0+1
Simplify3​tan(x)=1
3​tan(x)=1
Divide both sides by 3​
3​tan(x)=1
Divide both sides by 3​3​3​tan(x)​=3​1​
Simplify
3​3​tan(x)​=3​1​
Simplify 3​3​tan(x)​:tan(x)
3​3​tan(x)​
Cancel the common factor: 3​=tan(x)
Simplify 3​1​:33​​
3​1​
Multiply by the conjugate 3​3​​=3​3​1⋅3​​
1⋅3​=3​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=33​​
tan(x)=33​​
tan(x)=33​​
tan(x)=33​​
General solutions for tan(x)=33​​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=6π​+πn
x=6π​+πn
Combine all the solutionsx=2πn,x=π+2πn,x=65π​+πn,x=6π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1+cot^2(x)=8sin(x)4sin^2(x)=8sin^2(x/2)cos(pi/2-x)=01sin(45)=2.42sin(r)sec(x)=4sin(x)

Frequently Asked Questions (FAQ)

  • What is the general solution for tan^2(x)sin(x)-(sin(x))/3 =0 ?

    The general solution for tan^2(x)sin(x)-(sin(x))/3 =0 is x=2pin,x=pi+2pin,x=(5pi)/6+pin,x= pi/6+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024