Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x+20)=cos(x-50)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x+20∘)=cos(x−50∘)

Solution

x=−360∘n+60∘,x=−120∘−360∘n
+1
Radians
x=3π​−2πn,x=−32π​−2πn
Solution steps
sin(x+20∘)=cos(x−50∘)
Subtract cos(x−50∘) from both sidessin(x+20∘)−cos(x−50∘)=0
Simplify sin(x+20∘)−cos(x−50∘):sin(99x+180∘​)−cos(1818x−900∘​)
sin(x+20∘)−cos(x−50∘)
Join x+20∘:99x+180∘​
x+20∘
Convert element to fraction: x=9x9​=9x⋅9​+20∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9x⋅9+180∘​
=sin(99x+180∘​)−cos(x−50∘)
Join x−50∘:1818x−900∘​
x−50∘
Convert element to fraction: x=18x18​=18x⋅18​−50∘
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18x⋅18−900∘​
=sin(99x+180∘​)−cos(1818x−900∘​)
sin(99x+180∘​)−cos(1818x−900∘​)=0
Rewrite using trig identities
−cos(1818x−900∘​)+sin(9180∘+9x​)
Use the following identity: sin(x)=cos(90∘−x)=−cos(1818x−900∘​)+cos(90∘−9180∘+9x​)
Join 90∘−9180∘+9x​:181260∘−18x​
90∘−9180∘+9x​
Least Common Multiplier of 2,9:18
2,9
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 9=2⋅3⋅3
Multiply the numbers: 2⋅3⋅3=18=18
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 18
For 90∘:multiply the denominator and numerator by 990∘=2⋅9180∘9​=90∘
For 9180∘+9x​:multiply the denominator and numerator by 29180∘+9x​=9⋅2(180∘+9x)⋅2​=18(180∘+9x)⋅2​
=90∘−18(180∘+9x)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=18180∘9−(180∘+9x)⋅2​
Expand 180∘9−(180∘+9x)⋅2:1260∘−18x
180∘9−(180∘+9x)⋅2
=1620∘−2(180∘+9x)
Expand −2(180∘+9x):−360∘−18x
−2(180∘+9x)
Apply the distributive law: a(b+c)=ab+aca=−2,b=180∘,c=9x=−360∘+(−2)⋅9x
Apply minus-plus rules+(−a)=−a=−360∘−2⋅9x
Multiply the numbers: 2⋅9=18=−360∘−18x
=180∘9−360∘−18x
Add similar elements: 1620∘−360∘=1260∘=1260∘−18x
=181260∘−18x​
=−cos(1818x−900∘​)+cos(181260∘−18x​)
Use the Sum to Product identity: cos(s)−cos(t)=−2sin(2s+t​)sin(2s−t​)=−2sin(218−18x+1260∘​+1818x−900∘​​)sin(218−18x+1260∘​−1818x−900∘​​)
Simplify −2sin(218−18x+1260∘​+1818x−900∘​​)sin(218−18x+1260∘​−1818x−900∘​​):−2sin(10∘)sin(3−3x+180∘​)
−2sin(218−18x+1260∘​+1818x−900∘​​)sin(218−18x+1260∘​−1818x−900∘​​)
218−18x+1260∘​+1818x−900∘​​=10∘
218−18x+1260∘​+1818x−900∘​​
Combine the fractions 18−18x+1260∘​+1818x−900∘​:20∘
Apply rule ca​±cb​=ca±b​=18−18x+1260∘+18x−900∘​
−18x+1260∘+18x−900∘=360∘
−18x+1260∘+18x−900∘
Group like terms=−18x+18x+1260∘−900∘
Add similar elements: −18x+18x=0=1260∘−900∘
Add similar elements: 1260∘−900∘=360∘=360∘
=20∘
Cancel the common factor: 2=20∘
=220∘​
Apply the fraction rule: acb​​=c⋅ab​=9⋅2180∘​
Multiply the numbers: 9⋅2=18=10∘
=−2sin(10∘)sin(218−18x+1260∘​−1818x−900∘​​)
218−18x+1260∘​−1818x−900∘​​=3−3x+180∘​
218−18x+1260∘​−1818x−900∘​​
Combine the fractions 18−18x+1260∘​−1818x−900∘​:18−18x+1260∘−(18x−900∘)​
Apply rule ca​±cb​=ca±b​=18−18x+1260∘−(18x−900∘)​
=218−18x+1260∘−(18x−900∘)​​
Apply the fraction rule: acb​​=c⋅ab​=18⋅2−18x+1260∘−(18x−900∘)​
Multiply the numbers: 18⋅2=36=36−18x+1260∘−(18x−900∘)​
Expand −18x+1260∘−(18x−900∘):−36x+2160∘
−18x+1260∘−(18x−900∘)
−(18x−900∘):−18x+900∘
−(18x−900∘)
Distribute parentheses=−(18x)−(−900∘)
Apply minus-plus rules−(−a)=a,−(a)=−a=−18x+900∘
=−18x+1260∘−18x+900∘
Simplify −18x+1260∘−18x+900∘:−36x+2160∘
−18x+1260∘−18x+900∘
Group like terms=−18x−18x+1260∘+900∘
Add similar elements: −18x−18x=−36x=−36x+1260∘+900∘
Add similar elements: 1260∘+900∘=2160∘=−36x+2160∘
=−36x+2160∘
=36−36x+2160∘​
Factor −36x+2160∘:12(−3x+180∘)
−36x+2160∘
Rewrite as=−12⋅3x+2160∘
Factor out common term 12=12(−3x+180∘)
=3612(−3x+180∘)​
Cancel the common factor: 12=3−3x+180∘​
=−2sin(10∘)sin(3−3x+180∘​)
=−2sin(10∘)sin(3−3x+180∘​)
−2sin(10∘)sin(3−3x+180∘​)=0
Divide both sides by −2sin(10∘)
−2sin(10∘)sin(3−3x+180∘​)=0
Divide both sides by −2sin(10∘)−2sin(10∘)−2sin(10∘)sin(3−3x+180∘​)​=−2sin(10∘)0​
Simplifysin(3−3x+180∘​)=0
sin(3−3x+180∘​)=0
General solutions for sin(3−3x+180∘​)=0
sin(x) periodicity table with 360∘n cycle:
x030∘45∘60∘90∘120∘135∘150∘​sin(x)021​22​​23​​123​​22​​21​​x180∘210∘225∘240∘270∘300∘315∘330∘​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3−3x+180∘​=0+360∘n,3−3x+180∘​=180∘+360∘n
3−3x+180∘​=0+360∘n,3−3x+180∘​=180∘+360∘n
Solve 3−3x+180∘​=0+360∘n:x=−360∘n+60∘
3−3x+180∘​=0+360∘n
0+360∘n=360∘n3−3x+180∘​=360∘n
Multiply both sides by 3
3−3x+180∘​=360∘n
Multiply both sides by 333(−3x+180∘)​=3⋅360∘n
Simplify−3x+180∘=1080∘n
−3x+180∘=1080∘n
Move 180∘to the right side
−3x+180∘=1080∘n
Subtract 180∘ from both sides−3x+180∘−180∘=1080∘n−180∘
Simplify−3x=1080∘n−180∘
−3x=1080∘n−180∘
Divide both sides by −3
−3x=1080∘n−180∘
Divide both sides by −3−3−3x​=−31080∘n​−−3180∘​
Simplify
−3−3x​=−31080∘n​−−3180∘​
Simplify −3−3x​:x
−3−3x​
Apply the fraction rule: −b−a​=ba​=33x​
Divide the numbers: 33​=1=x
Simplify −31080∘n​−−3180∘​:−360∘n+60∘
−31080∘n​−−3180∘​
−31080∘n​=−360∘n
−31080∘n​
Apply the fraction rule: −ba​=−ba​=−31080∘n​
Divide the numbers: 36​=2=−360∘n
=−360∘n−−3180∘​
Apply the fraction rule: −ba​=−ba​=−360∘n−(−60∘)
Apply rule −(−a)=a=−360∘n+60∘
x=−360∘n+60∘
x=−360∘n+60∘
x=−360∘n+60∘
Solve 3−3x+180∘​=180∘+360∘n:x=−120∘−360∘n
3−3x+180∘​=180∘+360∘n
Multiply both sides by 3
3−3x+180∘​=180∘+360∘n
Multiply both sides by 333(−3x+180∘)​=540∘+3⋅360∘n
Simplify−3x+180∘=540∘+1080∘n
−3x+180∘=540∘+1080∘n
Move 180∘to the right side
−3x+180∘=540∘+1080∘n
Subtract 180∘ from both sides−3x+180∘−180∘=540∘+1080∘n−180∘
Simplify−3x=360∘+1080∘n
−3x=360∘+1080∘n
Divide both sides by −3
−3x=360∘+1080∘n
Divide both sides by −3−3−3x​=−3360∘​+−31080∘n​
Simplify
−3−3x​=−3360∘​+−31080∘n​
Simplify −3−3x​:x
−3−3x​
Apply the fraction rule: −b−a​=ba​=33x​
Divide the numbers: 33​=1=x
Simplify −3360∘​+−31080∘n​:−120∘−360∘n
−3360∘​+−31080∘n​
Apply the fraction rule: −ba​=−ba​=−120∘+−31080∘n​
−31080∘n​=−360∘n
−31080∘n​
Apply the fraction rule: −ba​=−ba​=−31080∘n​
Divide the numbers: 36​=2=−360∘n
=−120∘−360∘n
x=−120∘−360∘n
x=−120∘−360∘n
x=−120∘−360∘n
x=−360∘n+60∘,x=−120∘−360∘n

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

A=2sin(30+x)-cos(x)sin(x)= 1/4 ,sin(2x)sin(θ)=0.4224cos^2(x)+3cos(x)-1=0sin(4(x-pi/4))=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sin(x+20)=cos(x-50) ?

    The general solution for sin(x+20)=cos(x-50) is x=-360n+60,x=-120-360n
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024