Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)cot(x)=cos(x)cot(3x-50)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)cot(x)=cos(x)cot(3x−50)

Solution

x=2π​+2πn,x=23π​+2πn,x=πn+25,x=2π​+25+πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=1432.39448…∘+180∘n,x=1522.39448…∘+180∘n
Solution steps
cos(x)cot(x)=cos(x)cot(3x−50)
Subtract cos(x)cot(3x−50) from both sidescos(x)cot(x)−cos(x)cot(3x−50)=0
Factor cos(x)cot(x)−cos(x)cot(3x−50):cos(x)(cot(x)−cot(−50+3x))
cos(x)cot(x)−cos(x)cot(3x−50)
Factor out common term cos(x)=cos(x)(cot(x)−cot(−50+3x))
cos(x)(cot(x)−cot(−50+3x))=0
Solving each part separatelycos(x)=0orcot(x)−cot(−50+3x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cot(x)−cot(−50+3x)=0:x=πn+25,x=2π​+25+πn
cot(x)−cot(−50+3x)=0
Express with sin, cos
−cot(−50+3x)+cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(−50+3x)cos(−50+3x)​+cot(x)
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=−sin(−50+3x)cos(−50+3x)​+sin(x)cos(x)​
Simplify −sin(−50+3x)cos(−50+3x)​+sin(x)cos(x)​:sin(3x−50)sin(x)−cos(−50+3x)sin(x)+cos(x)sin(3x−50)​
−sin(−50+3x)cos(−50+3x)​+sin(x)cos(x)​
Least Common Multiplier of sin(−50+3x),sin(x):sin(3x−50)sin(x)
sin(−50+3x),sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(−50+3x) or sin(x)=sin(3x−50)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(3x−50)sin(x)
For sin(−50+3x)cos(−50+3x)​:multiply the denominator and numerator by sin(x)sin(−50+3x)cos(−50+3x)​=sin(−50+3x)sin(x)cos(−50+3x)sin(x)​
For sin(x)cos(x)​:multiply the denominator and numerator by sin(3x−50)sin(x)cos(x)​=sin(x)sin(3x−50)cos(x)sin(3x−50)​
=−sin(−50+3x)sin(x)cos(−50+3x)sin(x)​+sin(x)sin(3x−50)cos(x)sin(3x−50)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(3x−50)sin(x)−cos(−50+3x)sin(x)+cos(x)sin(3x−50)​
=sin(3x−50)sin(x)−cos(−50+3x)sin(x)+cos(x)sin(3x−50)​
sin(−50+3x)sin(x)−cos(−50+3x)sin(x)+cos(x)sin(−50+3x)​=0
g(x)f(x)​=0⇒f(x)=0−cos(−50+3x)sin(x)+cos(x)sin(−50+3x)=0
Rewrite using trig identities
−cos(−50+3x)sin(x)+cos(x)sin(−50+3x)
Use the Angle Difference identity: sin(s)cos(t)−cos(s)sin(t)=sin(s−t)=sin(−50+3x−x)
sin(−50+3x−x)=0
General solutions for sin(−50+3x−x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
−50+3x−x=0+2πn,−50+3x−x=π+2πn
−50+3x−x=0+2πn,−50+3x−x=π+2πn
Solve −50+3x−x=0+2πn:x=πn+25
−50+3x−x=0+2πn
Add similar elements: 3x−x=2x−50+2x=0+2πn
0+2πn=2πn−50+2x=2πn
Move 50to the right side
−50+2x=2πn
Add 50 to both sides−50+2x+50=2πn+50
Simplify2x=2πn+50
2x=2πn+50
Divide both sides by 2
2x=2πn+50
Divide both sides by 222x​=22πn​+250​
Simplify
22x​=22πn​+250​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22πn​+250​:πn+25
22πn​+250​
Divide the numbers: 22​=1=πn+250​
Divide the numbers: 250​=25=πn+25
x=πn+25
x=πn+25
x=πn+25
Solve −50+3x−x=π+2πn:x=2π​+25+πn
−50+3x−x=π+2πn
Add similar elements: 3x−x=2x−50+2x=π+2πn
Move 50to the right side
−50+2x=π+2πn
Add 50 to both sides−50+2x+50=π+2πn+50
Simplify2x=π+2πn+50
2x=π+2πn+50
Divide both sides by 2
2x=π+2πn+50
Divide both sides by 222x​=2π​+22πn​+250​
Simplify
22x​=2π​+22πn​+250​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​+22πn​+250​:2π​+25+πn
2π​+22πn​+250​
Group like terms=2π​+250​+22πn​
Divide the numbers: 250​=25=2π​+25+22πn​
Divide the numbers: 22​=1=2π​+25+πn
x=2π​+25+πn
x=2π​+25+πn
x=2π​+25+πn
x=πn+25,x=2π​+25+πn
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=πn+25,x=2π​+25+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)=(-sqrt(3))/2sinh(x)= 4/33tan(θ)+2cos(θ)=0cos(a)=0.8cos(a)=0.6
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024