Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3tan(θ)+2cos(θ)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3tan(θ)+2cos(θ)=0

Solution

θ=67π​+2πn,θ=611π​+2πn
+1
Degrees
θ=210∘+360∘n,θ=330∘+360∘n
Solution steps
3tan(θ)+2cos(θ)=0
Express with sin, cos
2cos(θ)+3tan(θ)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=2cos(θ)+3⋅cos(θ)sin(θ)​
Simplify 2cos(θ)+3⋅cos(θ)sin(θ)​:cos(θ)2cos2(θ)+3sin(θ)​
2cos(θ)+3⋅cos(θ)sin(θ)​
Multiply 3⋅cos(θ)sin(θ)​:cos(θ)3sin(θ)​
3⋅cos(θ)sin(θ)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(θ)sin(θ)⋅3​
=2cos(θ)+cos(θ)3sin(θ)​
Convert element to fraction: 2cos(θ)=cos(θ)2cos(θ)cos(θ)​=cos(θ)2cos(θ)cos(θ)​+cos(θ)sin(θ)⋅3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(θ)2cos(θ)cos(θ)+sin(θ)⋅3​
2cos(θ)cos(θ)+sin(θ)⋅3=2cos2(θ)+3sin(θ)
2cos(θ)cos(θ)+sin(θ)⋅3
2cos(θ)cos(θ)=2cos2(θ)
2cos(θ)cos(θ)
Apply exponent rule: ab⋅ac=ab+ccos(θ)cos(θ)=cos1+1(θ)=2cos1+1(θ)
Add the numbers: 1+1=2=2cos2(θ)
=2cos2(θ)+3sin(θ)
=cos(θ)2cos2(θ)+3sin(θ)​
=cos(θ)2cos2(θ)+3sin(θ)​
cos(θ)2cos2(θ)+3sin(θ)​=0
g(x)f(x)​=0⇒f(x)=02cos2(θ)+3sin(θ)=0
Rewrite using trig identities
2cos2(θ)+3sin(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=2(1−sin2(θ))+3sin(θ)
(1−sin2(θ))⋅2+3sin(θ)=0
Solve by substitution
(1−sin2(θ))⋅2+3sin(θ)=0
Let: sin(θ)=u(1−u2)⋅2+3u=0
(1−u2)⋅2+3u=0:u=−21​,u=2
(1−u2)⋅2+3u=0
Expand (1−u2)⋅2+3u:2−2u2+3u
(1−u2)⋅2+3u
=2(1−u2)+3u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2+3u
2−2u2+3u=0
Write in the standard form ax2+bx+c=0−2u2+3u+2=0
Solve with the quadratic formula
−2u2+3u+2=0
Quadratic Equation Formula:
For a=−2,b=3,c=2u1,2​=2(−2)−3±32−4(−2)⋅2​​
u1,2​=2(−2)−3±32−4(−2)⋅2​​
32−4(−2)⋅2​=5
32−4(−2)⋅2​
Apply rule −(−a)=a=32+4⋅2⋅2​
Multiply the numbers: 4⋅2⋅2=16=32+16​
32=9=9+16​
Add the numbers: 9+16=25=25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
u1,2​=2(−2)−3±5​
Separate the solutionsu1​=2(−2)−3+5​,u2​=2(−2)−3−5​
u=2(−2)−3+5​:−21​
2(−2)−3+5​
Remove parentheses: (−a)=−a=−2⋅2−3+5​
Add/Subtract the numbers: −3+5=2=−2⋅22​
Multiply the numbers: 2⋅2=4=−42​
Apply the fraction rule: −ba​=−ba​=−42​
Cancel the common factor: 2=−21​
u=2(−2)−3−5​:2
2(−2)−3−5​
Remove parentheses: (−a)=−a=−2⋅2−3−5​
Subtract the numbers: −3−5=−8=−2⋅2−8​
Multiply the numbers: 2⋅2=4=−4−8​
Apply the fraction rule: −b−a​=ba​=48​
Divide the numbers: 48​=2=2
The solutions to the quadratic equation are:u=−21​,u=2
Substitute back u=sin(θ)sin(θ)=−21​,sin(θ)=2
sin(θ)=−21​,sin(θ)=2
sin(θ)=−21​:θ=67π​+2πn,θ=611π​+2πn
sin(θ)=−21​
General solutions for sin(θ)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=67π​+2πn,θ=611π​+2πn
θ=67π​+2πn,θ=611π​+2πn
sin(θ)=2:No Solution
sin(θ)=2
−1≤sin(x)≤1NoSolution
Combine all the solutionsθ=67π​+2πn,θ=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(a)=0.8cos(a)=0.65cos^2(θ)=6sin(θ)8tan(θ)=012cos^2(x)+11cos(x)-5=0

Frequently Asked Questions (FAQ)

  • What is the general solution for 3tan(θ)+2cos(θ)=0 ?

    The general solution for 3tan(θ)+2cos(θ)=0 is θ=(7pi)/6+2pin,θ=(11pi)/6+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024