Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2(-cos^2(x)-sin(x)+sin^2(x))=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2(−cos2(x)−sin(x)+sin2(x))=0

Solution

x=2π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=90∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
Solution steps
2(−cos2(x)−sin(x)+sin2(x))=0
Rewrite using trig identities
(−cos2(x)−sin(x)+sin2(x))⋅2
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(−(1−sin2(x))−sin(x)+sin2(x))⋅2
Expand −(1−sin2(x))−sin(x)+sin2(x):2sin2(x)−sin(x)−1
−(1−sin2(x))−sin(x)+sin2(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
Distribute parentheses=−(1)−(−sin2(x))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)−sin(x)+sin2(x)
Simplify −1+sin2(x)−sin(x)+sin2(x):2sin2(x)−sin(x)−1
−1+sin2(x)−sin(x)+sin2(x)
Group like terms=sin2(x)−sin(x)+sin2(x)−1
Add similar elements: sin2(x)+sin2(x)=2sin2(x)=2sin2(x)−sin(x)−1
=2sin2(x)−sin(x)−1
=2(2sin2(x)−sin(x)−1)
(−1−sin(x)+2sin2(x))⋅2=0
Solve by substitution
(−1−sin(x)+2sin2(x))⋅2=0
Let: sin(x)=u(−1−u+2u2)⋅2=0
(−1−u+2u2)⋅2=0:u=1,u=−21​
(−1−u+2u2)⋅2=0
Factor (−1−u+2u2)⋅2:2(u−1)(2u+1)
(−1−u+2u2)⋅2
Factor 2u2−u−1:(2u+1)(u−1)
2u2−u−1
Write in the standard form ax2+bx+c=2u2−u−1
Break the expression into groups
2u2−u−1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=−1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒TrueCheck u=2,v=−1:u∗v=−2,u+v=1⇒False
u=1,v=−2
Group into (ax2+ux)+(vx+c)(2u2+u)+(−2u−1)
=(2u2+u)+(−2u−1)
Factor out ufrom 2u2+u:u(2u+1)
2u2+u
Apply exponent rule: ab+c=abacu2=uu=2uu+u
Factor out common term u=u(2u+1)
Factor out −1from −2u−1:−(2u+1)
−2u−1
Factor out common term −1=−(2u+1)
=u(2u+1)−(2u+1)
Factor out common term 2u+1=(2u+1)(u−1)
=2(u−1)(2u+1)
2(u−1)(2u+1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u−1=0or2u+1=0
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Solve 2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
The solutions to the quadratic equation are:u=1,u=−21​
Substitute back u=sin(x)sin(x)=1,sin(x)=−21​
sin(x)=1,sin(x)=−21​
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=2π​+2πn,x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)-sin(x)= 2/3tan(x)= 4/2arctan(x+1/3)+arctan(x-1/3)=arctan(2)sin(θ)=0,64cos(3x)=cos(2x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024