Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arctan(x+1/3)+arctan(x-1/3)=arctan(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arctan(x+31​)+arctan(x−31​)=arctan(2)

Solution

x=32​
Solution steps
arctan(x+31​)+arctan(x−31​)=arctan(2)
Rewrite using trig identities
arctan(x+31​)+arctan(x−31​)
Use the Sum to Product identity: arctan(s)+arctan(t)=arctan(1−sts+t​)=arctan(1−(x+31​)(x−31​)x+31​+x−31​​)
arctan(1−(x+31​)(x−31​)x+31​+x−31​​)=arctan(2)
Apply trig inverse properties
arctan(1−(x+31​)(x−31​)x+31​+x−31​​)=arctan(2)
arctan(x)=a⇒x=tan(a)1−(x+31​)(x−31​)x+31​+x−31​​=tan(arctan(2))
tan(arctan(2))=2
tan(arctan(2))
Rewrite using trig identities:tan(arctan(2))=2
Use the following identity: tan(arctan(x))=x
=2
=2
1−(x+31​)(x−31​)x+31​+x−31​​=2
1−(x+31​)(x−31​)x+31​+x−31​​=2
Solve 1−(x+31​)(x−31​)x+31​+x−31​​=2:x=−35​,x=32​
1−(x+31​)(x−31​)x+31​+x−31​​=2
Simplify 1−(x+31​)(x−31​)x+31​+x−31​​:−9x2+1018x​
1−(x+31​)(x−31​)x+31​+x−31​​
x+31​+x−31​=2x
x+31​+x−31​
Group like terms=x+x+31​−31​
Add similar elements: x+x=2x=2x+31​−31​
Add similar elements: 31​−31​=0=2x
=1−(x+31​)(x−31​)2x​
Expand 1−(x+31​)(x−31​):−x2+910​
1−(x+31​)(x−31​)
Expand −(x+31​)(x−31​):−x2+91​
Expand (x+31​)(x−31​):x2−91​
(x+31​)(x−31​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=x,b=31​=x2−(31​)2
(31​)2=91​
(31​)2
Apply exponent rule: (ba​)c=bcac​=3212​
Apply rule 1a=112=1=321​
32=9=91​
=x2−91​
=−(x2−91​)
Distribute parentheses=−(x2)−(−91​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−x2+91​
=1−x2+91​
Combine the fractions 1+91​:910​
1+91​
Convert element to fraction: 1=91⋅9​=91⋅9​+91​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=91⋅9+1​
1⋅9+1=10
1⋅9+1
Multiply the numbers: 1⋅9=9=9+1
Add the numbers: 9+1=10=10
=910​
=−x2+910​
=−x2+910​2x​
Join −x2+910​:9−9x2+10​
−x2+910​
Convert element to fraction: x2=9x29​=−9x2⋅9​+910​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=9−x2⋅9+10​
=9−9x2+10​2x​
Apply the fraction rule: cb​a​=ba⋅c​=−x2⋅9+102x⋅9​
Multiply the numbers: 2⋅9=18=−9x2+1018x​
−9x2+1018x​=2
Multiply both sides by −9x2+10
−9x2+1018x​=2
Multiply both sides by −9x2+10−9x2+1018x​(−9x2+10)=2(−9x2+10)
Simplify18x=2(−9x2+10)
18x=2(−9x2+10)
Solve 18x=2(−9x2+10):x=−35​,x=32​
18x=2(−9x2+10)
Expand 2(−9x2+10):−18x2+20
2(−9x2+10)
Apply the distributive law: a(b+c)=ab+aca=2,b=−9x2,c=10=2(−9x2)+2⋅10
Apply minus-plus rules+(−a)=−a=−2⋅9x2+2⋅10
Simplify −2⋅9x2+2⋅10:−18x2+20
−2⋅9x2+2⋅10
Multiply the numbers: 2⋅9=18=−18x2+2⋅10
Multiply the numbers: 2⋅10=20=−18x2+20
=−18x2+20
18x=−18x2+20
Switch sides−18x2+20=18x
Move 18xto the left side
−18x2+20=18x
Subtract 18x from both sides−18x2+20−18x=18x−18x
Simplify−18x2+20−18x=0
−18x2+20−18x=0
Write in the standard form ax2+bx+c=0−18x2−18x+20=0
Solve with the quadratic formula
−18x2−18x+20=0
Quadratic Equation Formula:
For a=−18,b=−18,c=20x1,2​=2(−18)−(−18)±(−18)2−4(−18)⋅20​​
x1,2​=2(−18)−(−18)±(−18)2−4(−18)⋅20​​
(−18)2−4(−18)⋅20​=42
(−18)2−4(−18)⋅20​
Apply rule −(−a)=a=(−18)2+4⋅18⋅20​
Apply exponent rule: (−a)n=an,if n is even(−18)2=182=182+4⋅18⋅20​
Multiply the numbers: 4⋅18⋅20=1440=182+1440​
182=324=324+1440​
Add the numbers: 324+1440=1764=1764​
Factor the number: 1764=422=422​
Apply radical rule: 422​=42=42
x1,2​=2(−18)−(−18)±42​
Separate the solutionsx1​=2(−18)−(−18)+42​,x2​=2(−18)−(−18)−42​
x=2(−18)−(−18)+42​:−35​
2(−18)−(−18)+42​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1818+42​
Add the numbers: 18+42=60=−2⋅1860​
Multiply the numbers: 2⋅18=36=−3660​
Apply the fraction rule: −ba​=−ba​=−3660​
Cancel the common factor: 12=−35​
x=2(−18)−(−18)−42​:32​
2(−18)−(−18)−42​
Remove parentheses: (−a)=−a,−(−a)=a=−2⋅1818−42​
Subtract the numbers: 18−42=−24=−2⋅18−24​
Multiply the numbers: 2⋅18=36=−36−24​
Apply the fraction rule: −b−a​=ba​=3624​
Cancel the common factor: 12=32​
The solutions to the quadratic equation are:x=−35​,x=32​
x=−35​,x=32​
Verify Solutions
Find undefined (singularity) points:x=−310​​,x=310​​
Take the denominator(s) of 1−(x+31​)(x−31​)x+31​+x−31​​ and compare to zero
Solve 1−(x+31​)(x−31​)=0:x=−310​​,x=310​​
1−(x+31​)(x−31​)=0
Expand 1−(x+31​)(x−31​):−x2+910​
1−(x+31​)(x−31​)
Expand −(x+31​)(x−31​):−x2+91​
Expand (x+31​)(x−31​):x2−91​
(x+31​)(x−31​)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=x,b=31​=x2−(31​)2
(31​)2=91​
(31​)2
Apply exponent rule: (ba​)c=bcac​=3212​
Apply rule 1a=112=1=321​
32=9=91​
=x2−91​
=−(x2−91​)
Distribute parentheses=−(x2)−(−91​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−x2+91​
=1−x2+91​
Combine the fractions 1+91​:910​
1+91​
Convert element to fraction: 1=91⋅9​=91⋅9​+91​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=91⋅9+1​
1⋅9+1=10
1⋅9+1
Multiply the numbers: 1⋅9=9=9+1
Add the numbers: 9+1=10=10
=910​
=−x2+910​
−x2+910​=0
Solve with the quadratic formula
−x2+910​=0
Quadratic Equation Formula:
For a=−1,b=0,c=910​x1,2​=2(−1)−0±02−4(−1)910​​​
x1,2​=2(−1)−0±02−4(−1)910​​​
02−4(−1)910​​=3210​​
02−4(−1)910​​
Apply rule 0a=002=0=0−4(−1)910​​
Apply rule −(−a)=a=0+4⋅1⋅910​​
4⋅1⋅910​=940​
4⋅1⋅910​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅910⋅4​
Multiply the numbers: 10⋅4=40=1⋅940​
Multiply: 1⋅940​=940​=940​
=0+940​​
0+940​=940​=940​​
Apply radical rule: assuming a≥0,b≥0=9​40​​
9​=3
9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
=340​​
40​=210​
40​
Prime factorization of 40:23⋅5
40
40divides by 240=20⋅2=2⋅20
20divides by 220=10⋅2=2⋅2⋅10
10divides by 210=5⋅2=2⋅2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅5
=23⋅5
=23⋅5​
Apply exponent rule: ab+c=ab⋅ac=22⋅2⋅5​
Apply radical rule: =22​2⋅5​
Apply radical rule: 22​=2=22⋅5​
Refine=210​
=3210​​
x1,2​=2(−1)−0±3210​​​
Separate the solutionsx1​=2(−1)−0+3210​​​,x2​=2(−1)−0−3210​​​
x=2(−1)−0+3210​​​:−310​​
2(−1)−0+3210​​​
Remove parentheses: (−a)=−a=−2⋅1−0+3210​​​
−0+3210​​=3210​​=−2⋅13210​​​
Multiply the numbers: 2⋅1=2=−23210​​​
Apply the fraction rule: −ba​=−ba​=−23210​​​
Apply the fraction rule: acb​​=c⋅ab​23210​​​=3⋅2210​​=−3⋅2210​​
Multiply the numbers: 3⋅2=6=−6210​​
Cancel the common factor: 2=−310​​
x=2(−1)−0−3210​​​:310​​
2(−1)−0−3210​​​
Remove parentheses: (−a)=−a=−2⋅1−0−3210​​​
−0−3210​​=−3210​​=−2⋅1−3210​​​
Multiply the numbers: 2⋅1=2=−2−3210​​​
Apply the fraction rule: −b−a​=ba​=23210​​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅2210​​
Multiply the numbers: 3⋅2=6=6210​​
Cancel the common factor: 2=310​​
The solutions to the quadratic equation are:x=−310​​,x=310​​
The following points are undefinedx=−310​​,x=310​​
Combine undefined points with solutions:
x=−35​,x=32​
x=−35​,x=32​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arctan(x+31​)+arctan(x−31​)=arctan(2)
Remove the ones that don't agree with the equation.
Check the solution −35​:False
−35​
Plug in n=1−35​
For arctan(x+31​)+arctan(x−31​)=arctan(2)plug inx=−35​arctan(−35​+31​)+arctan(−35​−31​)=arctan(2)
Refine−2.03444…=1.10714…
⇒False
Check the solution 32​:True
32​
Plug in n=132​
For arctan(x+31​)+arctan(x−31​)=arctan(2)plug inx=32​arctan(32​+31​)+arctan(32​−31​)=arctan(2)
Refine1.10714…=1.10714…
⇒True
x=32​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(θ)=0,64cos(3x)=cos(2x)2cos(x)cos^3(x)+cos^2(x)-sin^2(x)=cos(x)2sin(2x)=tan(2x)cos(x)=0.22

Frequently Asked Questions (FAQ)

  • What is the general solution for arctan(x+1/3)+arctan(x-1/3)=arctan(2) ?

    The general solution for arctan(x+1/3)+arctan(x-1/3)=arctan(2) is x= 2/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024