Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(csc^2(x))/4 =4sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4csc2(x)​=4sin2(x)

Solution

x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=210∘+360∘n,x=330∘+360∘n
Solution steps
4csc2(x)​=4sin2(x)
Subtract 4sin2(x) from both sides4csc2(x)​−4sin2(x)=0
Simplify 4csc2(x)​−4sin2(x):4csc2(x)−16sin2(x)​
4csc2(x)​−4sin2(x)
Convert element to fraction: 4sin2(x)=44sin2(x)4​=4csc2(x)​−44sin2(x)⋅4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4csc2(x)−4sin2(x)⋅4​
Multiply the numbers: 4⋅4=16=4csc2(x)−16sin2(x)​
4csc2(x)−16sin2(x)​=0
g(x)f(x)​=0⇒f(x)=0csc2(x)−16sin2(x)=0
Factor csc2(x)−16sin2(x):(csc(x)+4sin(x))(csc(x)−4sin(x))
csc2(x)−16sin2(x)
Rewrite csc2(x)−16sin2(x) as csc2(x)−(4sin(x))2
csc2(x)−16sin2(x)
Rewrite 16 as 42=csc2(x)−42sin2(x)
Apply exponent rule: ambm=(ab)m42sin2(x)=(4sin(x))2=csc2(x)−(4sin(x))2
=csc2(x)−(4sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)csc2(x)−(4sin(x))2=(csc(x)+4sin(x))(csc(x)−4sin(x))=(csc(x)+4sin(x))(csc(x)−4sin(x))
(csc(x)+4sin(x))(csc(x)−4sin(x))=0
Solving each part separatelycsc(x)+4sin(x)=0orcsc(x)−4sin(x)=0
csc(x)+4sin(x)=0:No Solution
csc(x)+4sin(x)=0
Rewrite using trig identities
csc(x)+4sin(x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=csc(x)+4⋅csc(x)1​
4⋅csc(x)1​=csc(x)4​
4⋅csc(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=csc(x)1⋅4​
Multiply the numbers: 1⋅4=4=csc(x)4​
=csc(x)+csc(x)4​
csc(x)+csc(x)4​=0
Solve by substitution
csc(x)+csc(x)4​=0
Let: csc(x)=uu+u4​=0
u+u4​=0:u=2i,u=−2i
u+u4​=0
Multiply both sides by u
u+u4​=0
Multiply both sides by uuu+u4​u=0⋅u
Simplify
uu+u4​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u4​u:4
u4​u
Multiply fractions: a⋅cb​=ca⋅b​=u4u​
Cancel the common factor: u=4
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2+4=0
u2+4=0
u2+4=0
Solve u2+4=0:u=2i,u=−2i
u2+4=0
Move 4to the right side
u2+4=0
Subtract 4 from both sidesu2+4−4=0−4
Simplifyu2=−4
u2=−4
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−4​,u=−−4​
Simplify −4​:2i
−4​
Apply radical rule: −a​=−1​a​−4​=−1​4​=−1​4​
Apply imaginary number rule: −1​=i=4​i
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2i
Simplify −−4​:−2i
−−4​
Simplify −4​:2i
−4​
Apply radical rule: −a​=−1​a​−4​=−1​4​=−1​4​
Apply imaginary number rule: −1​=i=4​i
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=2i
=−2i
u=2i,u=−2i
u=2i,u=−2i
Substitute back u=csc(x)csc(x)=2i,csc(x)=−2i
csc(x)=2i,csc(x)=−2i
csc(x)=2i:No Solution
csc(x)=2i
NoSolution
csc(x)=−2i:No Solution
csc(x)=−2i
NoSolution
Combine all the solutionsNoSolution
csc(x)−4sin(x)=0:x=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
csc(x)−4sin(x)=0
Rewrite using trig identities
csc(x)−4sin(x)
Use the basic trigonometric identity: sin(x)=csc(x)1​=csc(x)−4⋅csc(x)1​
4⋅csc(x)1​=csc(x)4​
4⋅csc(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=csc(x)1⋅4​
Multiply the numbers: 1⋅4=4=csc(x)4​
=csc(x)−csc(x)4​
csc(x)−csc(x)4​=0
Solve by substitution
csc(x)−csc(x)4​=0
Let: csc(x)=uu−u4​=0
u−u4​=0:u=2,u=−2
u−u4​=0
Multiply both sides by u
u−u4​=0
Multiply both sides by uuu−u4​u=0⋅u
Simplify
uu−u4​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify −u4​u:−4
−u4​u
Multiply fractions: a⋅cb​=ca⋅b​=−u4u​
Cancel the common factor: u=−4
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2−4=0
u2−4=0
u2−4=0
Solve u2−4=0:u=2,u=−2
u2−4=0
Move 4to the right side
u2−4=0
Add 4 to both sidesu2−4+4=0+4
Simplifyu2=4
u2=4
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=4​,u=−4​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
−4​=−2
−4​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=−2
u=2,u=−2
u=2,u=−2
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u−u4​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2,u=−2
Substitute back u=csc(x)csc(x)=2,csc(x)=−2
csc(x)=2,csc(x)=−2
csc(x)=2:x=6π​+2πn,x=65π​+2πn
csc(x)=2
General solutions for csc(x)=2
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
csc(x)=−2:x=67π​+2πn,x=611π​+2πn
csc(x)=−2
General solutions for csc(x)=−2
csc(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​csc(x)Undefiend22​323​​1323​​2​2​xπ67π​45π​34π​23π​35π​47π​611π​​csc(x)Undefiend−2−2​−323​​−1−323​​−2​−2​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

6sec^2(x)-3cos(x)-10=sec(x)tan(x)-sec(x)=sqrt(3)sin^2(x)+cos(2x)=14tan(3x)=-4cos(pi/3-x)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024