Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sec^2(x)-3cos(x)-10=sec(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sec2(x)−3cos(x)−10=sec(x)

Solution

x=π+2πn,x=0.84106…+2πn,x=2π−0.84106…+2πn
+1
Degrees
x=180∘+360∘n,x=48.18968…∘+360∘n,x=311.81031…∘+360∘n
Solution steps
6sec2(x)−3cos(x)−10=sec(x)
Subtract sec(x) from both sides6sec2(x)−3cos(x)−10−sec(x)=0
Rewrite using trig identities
−10−sec(x)−3cos(x)+6sec2(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=−10−sec(x)−3⋅sec(x)1​+6sec2(x)
3⋅sec(x)1​=sec(x)3​
3⋅sec(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅3​
Multiply the numbers: 1⋅3=3=sec(x)3​
=−10−sec(x)−sec(x)3​+6sec2(x)
−10−sec(x)3​−sec(x)+6sec2(x)=0
Solve by substitution
−10−sec(x)3​−sec(x)+6sec2(x)=0
Let: sec(x)=u−10−u3​−u+6u2=0
−10−u3​−u+6u2=0:u=−1,u=−31​,u=23​
−10−u3​−u+6u2=0
Multiply both sides by u
−10−u3​−u+6u2=0
Multiply both sides by u−10u−u3​u−uu+6u2u=0⋅u
Simplify
−10u−u3​u−uu+6u2u=0⋅u
Simplify −u3​u:−3
−u3​u
Multiply fractions: a⋅cb​=ca⋅b​=−u3u​
Cancel the common factor: u=−3
Simplify −uu:−u2
−uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−u1+1
Add the numbers: 1+1=2=−u2
Simplify 6u2u:6u3
6u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=6u2+1
Add the numbers: 2+1=3=6u3
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−10u−3−u2+6u3=0
−10u−3−u2+6u3=0
−10u−3−u2+6u3=0
Solve −10u−3−u2+6u3=0:u=−1,u=−31​,u=23​
−10u−3−u2+6u3=0
Write in the standard form an​xn+…+a1​x+a0​=06u3−u2−10u−3=0
Factor 6u3−u2−10u−3:(u+1)(3u+1)(2u−3)
6u3−u2−10u−3
Use the rational root theorem
a0​=3,an​=6
The dividers of a0​:1,3,The dividers of an​:1,2,3,6
Therefore, check the following rational numbers:±1,2,3,61,3​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+16u3−u2−10u−3​
u+16u3−u2−10u−3​=6u2−7u−3
u+16u3−u2−10u−3​
Divide u+16u3−u2−10u−3​:u+16u3−u2−10u−3​=6u2+u+1−7u2−10u−3​
Divide the leading coefficients of the numerator 6u3−u2−10u−3
and the divisor u+1:u6u3​=6u2
Quotient=6u2
Multiply u+1 by 6u2:6u3+6u2Subtract 6u3+6u2 from 6u3−u2−10u−3 to get new remainderRemainder=−7u2−10u−3
Thereforeu+16u3−u2−10u−3​=6u2+u+1−7u2−10u−3​
=6u2+u+1−7u2−10u−3​
Divide u+1−7u2−10u−3​:u+1−7u2−10u−3​=−7u+u+1−3u−3​
Divide the leading coefficients of the numerator −7u2−10u−3
and the divisor u+1:u−7u2​=−7u
Quotient=−7u
Multiply u+1 by −7u:−7u2−7uSubtract −7u2−7u from −7u2−10u−3 to get new remainderRemainder=−3u−3
Thereforeu+1−7u2−10u−3​=−7u+u+1−3u−3​
=6u2−7u+u+1−3u−3​
Divide u+1−3u−3​:u+1−3u−3​=−3
Divide the leading coefficients of the numerator −3u−3
and the divisor u+1:u−3u​=−3
Quotient=−3
Multiply u+1 by −3:−3u−3Subtract −3u−3 from −3u−3 to get new remainderRemainder=0
Thereforeu+1−3u−3​=−3
=6u2−7u−3
=6u2−7u−3
Factor 6u2−7u−3:(3u+1)(2u−3)
6u2−7u−3
Break the expression into groups
6u2−7u−3
Definition
Factors of 18:1,2,3,6,9,18
18
Divisors (Factors)
Find the Prime factors of 18:2,3,3
18
18divides by 218=9⋅2=2⋅9
9divides by 39=3⋅3=2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3⋅3
Multiply the prime factors of 18:6,9
2⋅3=63⋅3=9
6,9
6,9
Add the prime factors: 2,3
Add 1 and the number 18 itself1,18
The factors of 181,2,3,6,9,18
Negative factors of 18:−1,−2,−3,−6,−9,−18
Multiply the factors by −1 to get the negative factors−1,−2,−3,−6,−9,−18
For every two factors such that u∗v=−18,check if u+v=−7
Check u=1,v=−18:u∗v=−18,u+v=−17⇒FalseCheck u=2,v=−9:u∗v=−18,u+v=−7⇒True
u=2,v=−9
Group into (ax2+ux)+(vx+c)(6u2+2u)+(−9u−3)
=(6u2+2u)+(−9u−3)
Factor out 2ufrom 6u2+2u:2u(3u+1)
6u2+2u
Apply exponent rule: ab+c=abacu2=uu=6uu+2u
Rewrite 6 as 2⋅3=2⋅3uu+2u
Factor out common term 2u=2u(3u+1)
Factor out −3from −9u−3:−3(3u+1)
−9u−3
Rewrite 9 as 3⋅3=−3⋅3u−3
Factor out common term −3=−3(3u+1)
=2u(3u+1)−3(3u+1)
Factor out common term 3u+1=(3u+1)(2u−3)
=(u+1)(3u+1)(2u−3)
(u+1)(3u+1)(2u−3)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or3u+1=0or2u−3=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 3u+1=0:u=−31​
3u+1=0
Move 1to the right side
3u+1=0
Subtract 1 from both sides3u+1−1=0−1
Simplify3u=−1
3u=−1
Divide both sides by 3
3u=−1
Divide both sides by 333u​=3−1​
Simplifyu=−31​
u=−31​
Solve 2u−3=0:u=23​
2u−3=0
Move 3to the right side
2u−3=0
Add 3 to both sides2u−3+3=0+3
Simplify2u=3
2u=3
Divide both sides by 2
2u=3
Divide both sides by 222u​=23​
Simplifyu=23​
u=23​
The solutions areu=−1,u=−31​,u=23​
u=−1,u=−31​,u=23​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −10−u3​−u+6u2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=−31​,u=23​
Substitute back u=sec(x)sec(x)=−1,sec(x)=−31​,sec(x)=23​
sec(x)=−1,sec(x)=−31​,sec(x)=23​
sec(x)=−1:x=π+2πn
sec(x)=−1
General solutions for sec(x)=−1
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
sec(x)=−31​:No Solution
sec(x)=−31​
sec(x)≤−1orsec(x)≥1NoSolution
sec(x)=23​:x=arcsec(23​)+2πn,x=2π−arcsec(23​)+2πn
sec(x)=23​
Apply trig inverse properties
sec(x)=23​
General solutions for sec(x)=23​sec(x)=a⇒x=arcsec(a)+2πn,x=2π−arcsec(a)+2πnx=arcsec(23​)+2πn,x=2π−arcsec(23​)+2πn
x=arcsec(23​)+2πn,x=2π−arcsec(23​)+2πn
Combine all the solutionsx=π+2πn,x=arcsec(23​)+2πn,x=2π−arcsec(23​)+2πn
Show solutions in decimal formx=π+2πn,x=0.84106…+2πn,x=2π−0.84106…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(x)-sec(x)=sqrt(3)sin^2(x)+cos(2x)=14tan(3x)=-4cos(pi/3-x)=12(cos(t))^2-cos(t)-1=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024