Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sec^2(x))/2 =2cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sec2(x)​=2cos2(x)

Solution

x=4π​+2πn,x=47π​+2πn,x=43π​+2πn,x=45π​+2πn
+1
Degrees
x=45∘+360∘n,x=315∘+360∘n,x=135∘+360∘n,x=225∘+360∘n
Solution steps
2sec2(x)​=2cos2(x)
Subtract 2cos2(x) from both sides2sec2(x)​−2cos2(x)=0
Simplify 2sec2(x)​−2cos2(x):2sec2(x)−4cos2(x)​
2sec2(x)​−2cos2(x)
Convert element to fraction: 2cos2(x)=22cos2(x)2​=2sec2(x)​−22cos2(x)⋅2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2sec2(x)−2cos2(x)⋅2​
Multiply the numbers: 2⋅2=4=2sec2(x)−4cos2(x)​
2sec2(x)−4cos2(x)​=0
g(x)f(x)​=0⇒f(x)=0sec2(x)−4cos2(x)=0
Factor sec2(x)−4cos2(x):(sec(x)+2cos(x))(sec(x)−2cos(x))
sec2(x)−4cos2(x)
Rewrite sec2(x)−4cos2(x) as sec2(x)−(2cos(x))2
sec2(x)−4cos2(x)
Rewrite 4 as 22=sec2(x)−22cos2(x)
Apply exponent rule: ambm=(ab)m22cos2(x)=(2cos(x))2=sec2(x)−(2cos(x))2
=sec2(x)−(2cos(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)sec2(x)−(2cos(x))2=(sec(x)+2cos(x))(sec(x)−2cos(x))=(sec(x)+2cos(x))(sec(x)−2cos(x))
(sec(x)+2cos(x))(sec(x)−2cos(x))=0
Solving each part separatelysec(x)+2cos(x)=0orsec(x)−2cos(x)=0
sec(x)+2cos(x)=0:No Solution
sec(x)+2cos(x)=0
Rewrite using trig identities
sec(x)+2cos(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=sec(x)+2⋅sec(x)1​
2⋅sec(x)1​=sec(x)2​
2⋅sec(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅2​
Multiply the numbers: 1⋅2=2=sec(x)2​
=sec(x)+sec(x)2​
sec(x)2​+sec(x)=0
Solve by substitution
sec(x)2​+sec(x)=0
Let: sec(x)=uu2​+u=0
u2​+u=0:u=2​i,u=−2​i
u2​+u=0
Multiply both sides by u
u2​+u=0
Multiply both sides by uu2​u+uu=0⋅u
Simplify
u2​u+uu=0⋅u
Simplify u2​u:2
u2​u
Multiply fractions: a⋅cb​=ca⋅b​=u2u​
Cancel the common factor: u=2
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
2+u2=0
2+u2=0
2+u2=0
Solve 2+u2=0:u=2​i,u=−2​i
2+u2=0
Move 2to the right side
2+u2=0
Subtract 2 from both sides2+u2−2=0−2
Simplifyu2=−2
u2=−2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−2​,u=−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
Simplify −−2​:−2​i
−−2​
Simplify −2​:2​i
−2​
Apply radical rule: −a​=−1​a​−2​=−1​2​=−1​2​
Apply imaginary number rule: −1​=i=2​i
=−2​i
u=2​i,u=−2​i
u=2​i,u=−2​i
Substitute back u=sec(x)sec(x)=2​i,sec(x)=−2​i
sec(x)=2​i,sec(x)=−2​i
sec(x)=2​i:No Solution
sec(x)=2​i
NoSolution
sec(x)=−2​i:No Solution
sec(x)=−2​i
NoSolution
Combine all the solutionsNoSolution
sec(x)−2cos(x)=0:x=4π​+2πn,x=47π​+2πn,x=43π​+2πn,x=45π​+2πn
sec(x)−2cos(x)=0
Rewrite using trig identities
sec(x)−2cos(x)
Use the basic trigonometric identity: cos(x)=sec(x)1​=sec(x)−2⋅sec(x)1​
2⋅sec(x)1​=sec(x)2​
2⋅sec(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=sec(x)1⋅2​
Multiply the numbers: 1⋅2=2=sec(x)2​
=sec(x)−sec(x)2​
−sec(x)2​+sec(x)=0
Solve by substitution
−sec(x)2​+sec(x)=0
Let: sec(x)=u−u2​+u=0
−u2​+u=0:u=2​,u=−2​
−u2​+u=0
Multiply both sides by u
−u2​+u=0
Multiply both sides by u−u2​u+uu=0⋅u
Simplify
−u2​u+uu=0⋅u
Simplify −u2​u:−2
−u2​u
Multiply fractions: a⋅cb​=ca⋅b​=−u2u​
Cancel the common factor: u=−2
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
−2+u2=0
−2+u2=0
−2+u2=0
Solve −2+u2=0:u=2​,u=−2​
−2+u2=0
Move 2to the right side
−2+u2=0
Add 2 to both sides−2+u2+2=0+2
Simplifyu2=2
u2=2
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=2​,u=−2​
u=2​,u=−2​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of −u2​+u and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2​,u=−2​
Substitute back u=sec(x)sec(x)=2​,sec(x)=−2​
sec(x)=2​,sec(x)=−2​
sec(x)=2​:x=4π​+2πn,x=47π​+2πn
sec(x)=2​
General solutions for sec(x)=2​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
sec(x)=−2​:x=43π​+2πn,x=45π​+2πn
sec(x)=−2​
General solutions for sec(x)=−2​
sec(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
Combine all the solutionsx=4π​+2πn,x=47π​+2πn,x=43π​+2πn,x=45π​+2πn
Combine all the solutionsx=4π​+2πn,x=47π​+2πn,x=43π​+2πn,x=45π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x/2)=-110sin(x)+10cos^2(x)=10,0<= x<2pisin(x)-sqrt(3-3sin^2(x))=04tan^2(x)+21tan(x)-49=02sin(2x+15)=1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024