Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-tanh(2x))/(1+tanh(2x))=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1+tanh(2x)1−tanh(2x)​=2

Solution

x=−41​ln(2)
+1
Degrees
x=−9.92860…∘
Solution steps
1+tanh(2x)1−tanh(2x)​=2
Rewrite using trig identities
1+tanh(2x)1−tanh(2x)​=2
Use the Hyperbolic identity: tanh(x)=ex+e−xex−e−x​1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​=2
1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​=2
1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​=2:x=−41​ln(2)
1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​=2
Multiply both sides by 1+e2x+e−2xe2x−e−2x​1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​(1+e2x+e−2xe2x−e−2x​)=2(1+e2x+e−2xe2x−e−2x​)
Simplify1−e2x+e−2xe2x−e−2x​=2(1+e2x+e−2xe2x−e−2x​)
Apply exponent rules
1−e2x+e−2xe2x−e−2x​=2(1+e2x+e−2xe2x−e−2x​)
Apply exponent rule: abc=(ab)ce2x=(ex)2,e−2x=(ex)−21−(ex)2+(ex)−2(ex)2−(ex)−2​=2(1+(ex)2+(ex)−2(ex)2−(ex)−2​)
1−(ex)2+(ex)−2(ex)2−(ex)−2​=2(1+(ex)2+(ex)−2(ex)2−(ex)−2​)
Rewrite the equation with ex=u1−(u)2+(u)−2(u)2−(u)−2​=2(1+(u)2+(u)−2(u)2−(u)−2​)
Solve
1−u2+u−2u2−u−2​=2(1+u2+u−2u2−u−2​)
Refine1−u4+1u4−1​=2(1+u4+1u4−1​)
Multiply both sides by u4+1
1−u4+1u4−1​=2(1+u4+1u4−1​)
Multiply both sides by u4+11⋅(u4+1)−u4+1u4−1​(u4+1)=2(1+u4+1u4−1​)(u4+1)
Simplify
1⋅(u4+1)−u4+1u4−1​(u4+1)=2(1+u4+1u4−1​)(u4+1)
Simplify 1⋅(u4+1):u4+1
1⋅(u4+1)
Multiply: 1⋅(u4+1)=(u4+1)=(u4+1)
Remove parentheses: (a)=a=u4+1
Simplify −u4+1u4−1​(u4+1):−(u4−1)
−u4+1u4−1​(u4+1)
Multiply fractions: a⋅cb​=ca⋅b​=−u4+1(u4−1)(u4+1)​
Cancel the common factor: u4+1=−(u4−1)
u4+1−(u4−1)=2(1+u4+1u4−1​)(u4+1)
u4+1−(u4−1)=2(1+u4+1u4−1​)(u4+1)
u4+1−(u4−1)=2(1+u4+1u4−1​)(u4+1)
Expand u4+1−(u4−1):2
u4+1−(u4−1)
−(u4−1):−u4+1
−(u4−1)
Distribute parentheses=−(u4)−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−u4+1
=u4+1−u4+1
Simplify u4+1−u4+1:2
u4+1−u4+1
Group like terms=u4−u4+1+1
Add similar elements: u4−u4=0=1+1
Add the numbers: 1+1=2=2
=2
Expand 2(1+u4+1u4−1​)(u4+1):4u4
2(1+u4+1u4−1​)(u4+1)
Expand (1+u4+1u4−1​)(u4+1):2u4
(1+u4+1u4−1​)(u4+1)
Apply FOIL method: (a+b)(c+d)=ac+ad+bc+bda=1,b=u4+1u4−1​,c=u4,d=1=1⋅u4+1⋅1+u4+1u4−1​u4+u4+1u4−1​⋅1
=1⋅u4+1⋅1+u4+1u4−1​u4+1⋅u4+1u4−1​
Simplify 1⋅u4+1⋅1+u4+1u4−1​u4+1⋅u4+1u4−1​:2u4
1⋅u4+1⋅1+u4+1u4−1​u4+1⋅u4+1u4−1​
1⋅u4=u4
1⋅u4
Multiply: 1⋅u4=u4=u4
1⋅1=1
1⋅1
Multiply the numbers: 1⋅1=1=1
u4+1u4−1​u4=u4+1u8−u4​
u4+1u4−1​u4
Multiply fractions: a⋅cb​=ca⋅b​=u4+1(u4−1)u4​
Expand (u4−1)u4:u8−u4
(u4−1)u4
=u4(u4−1)
Apply the distributive law: a(b−c)=ab−aca=u4,b=u4,c=1=u4u4−u4⋅1
=u4u4−1⋅u4
Simplify u4u4−1⋅u4:u8−u4
u4u4−1⋅u4
u4u4=u8
u4u4
Apply exponent rule: ab⋅ac=ab+cu4u4=u4+4=u4+4
Add the numbers: 4+4=8=u8
1⋅u4=u4
1⋅u4
Multiply: 1⋅u4=u4=u4
=u8−u4
=u8−u4
=u4+1u8−u4​
1⋅u4+1u4−1​=u4+1u4−1​
1⋅u4+1u4−1​
Multiply: 1⋅u4+1u4−1​=u4+1u4−1​=u4+1u4−1​
=u4+1+u4+1u8−u4​+u4+1u4−1​
Combine the fractions u4+1u8−u4​+u4+1u4−1​:(u2+1)(u+1)(u−1)
Apply rule ca​±cb​=ca±b​=u4+1u8−u4+u4−1​
Add similar elements: −u4+u4=0=u4+1u8−1​
Factor u8−1:(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)
u8−1
Rewrite u8−1 as (u4)2−12
u8−1
Rewrite 1 as 12=u8−12
Apply exponent rule: abc=(ab)cu8=(u4)2=(u4)2−12
=(u4)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(u4)2−12=(u4+1)(u4−1)=(u4+1)(u4−1)
Factor u4+1:(u2+2​u+1)(u2−2​u+1)
u4+1
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)
=(u2+2​u+1)(u2−2​u+1)(u4−1)
Factor u4−1:(u2+1)(u+1)(u−1)
u4−1
Rewrite u4−1 as (u2)2−12
u4−1
Rewrite 1 as 12=u4−12
Apply exponent rule: abc=(ab)cu4=(u2)2=(u2)2−12
=(u2)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(u2)2−12=(u2+1)(u2−1)=(u2+1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)
=u4+1(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)​
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)​
Cancel (u2+2​u+1)(u2−2​u+1)(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)​:(u2+1)(u+1)(u−1)
(u2+2​u+1)(u2−2​u+1)(u2+2​u+1)(u2−2​u+1)(u2+1)(u+1)(u−1)​
Cancel the common factor: u2+2​u+1=u2−2​u+1(u2−2​u+1)(u2+1)(u+1)(u−1)​
Cancel the common factor: u2−2​u+1=(u2+1)(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=u4+1+(u2+1)(u+1)(u−1)
Expand (u2+1)(u+1)(u−1):u4−1
Expand (u+1)(u−1):u2−1
(u+1)(u−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=u,b=1=u2−12
Apply rule 1a=112=1=u2−1
=(u2+1)(u2−1)
Expand (u2+1)(u2−1):u4−1
(u2+1)(u2−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=u2,b=1=(u2)2−12
Simplify (u2)2−12:u4−1
(u2)2−12
Apply rule 1a=112=1=(u2)2−1
(u2)2=u4
(u2)2
Apply exponent rule: (ab)c=abc=u2⋅2
Multiply the numbers: 2⋅2=4=u4
=u4−1
=u4−1
=u4−1
=u4+1+u4−1
Simplify u4+1+u4−1:2u4
u4+1+u4−1
Group like terms=u4+u4+1−1
Add similar elements: u4+u4=2u4=2u4+1−1
1−1=0=2u4
=2u4
=2u4
=2⋅2u4
Expand 2⋅2u4:4u4
2⋅2u4
Distribute parentheses=2⋅2u4
Multiply the numbers: 2⋅2=4=4u4
=4u4
2=4u4
Solve
2=4u4
Switch sides4u4=2
Divide both sides by 4
4u4=2
Divide both sides by 444u4​=42​
Simplifyu4=21​
u4=21​
For xn=f(a), n is even, the solutions are
Apply radical rule:
Apply radical rule:
Apply radical rule:
Apply radical rule:
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1−u2+u−2u2−u−2​ and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
Take the denominator(s) of 2(1+u2+u−2u2−u−2​) and compare to zero
Solve u2=0:u=0
u2=0
Apply rule xn=0⇒x=0
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
Substitute back u=ex,solve for x
Solve
Apply exponent rules
Apply exponent rule: ab1​=a−bex=2−41​
Apply exponent rule: 2−41​=2−41​ex=2−41​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(2−41​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(2−41​)
Apply log rule: ln(xa)=a⋅ln(x)ln(2−41​)=−41​ln(2)x=−41​ln(2)
x=−41​ln(2)
Solve No Solution for x∈R
Apply exponent rules
Apply exponent rule: ab1​=a−bex=−2−41​
ex=−2−41​
af(x) cannot be zero or negative for x∈RNoSolutionforx∈R
x=−41​ln(2)
Verify Solutions:x=−41​ln(2)True
Check the solutions by plugging them into 1+e2x+e−2xe2x−e−2x​1−e2x+e−2xe2x−e−2x​​=2
Remove the ones that don't agree with the equation.
Plug in x=−41​ln(2):True
1+e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​1−e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​​=2
1+e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​1−e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​​=2
1+e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​1−e2(−41​ln(2))+e−2(−41​ln(2))e2(−41​ln(2))−e−2(−41​ln(2))​​
Remove parentheses: (−a)=−a,−(−a)=a=1+e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​1−e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​​
e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​=−31​
e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​
e−2⋅41​ln(2)=2​1​
e−2⋅41​ln(2)
Multiply −2⋅41​ln(2):−21​ln(2)
−2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=−41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e−21​ln(2)
Apply exponent rule: abc=(ab)c=(eln(2))−21​
Apply log rule: aloga​(b)=beln(2)=2=2−21​
Apply exponent rule: a−b=ab1​=2​1​
e2⋅41​ln(2)=2​
e2⋅41​ln(2)
Multiply 2⋅41​ln(2):21​ln(2)
2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e21​ln(2)
Apply exponent rule: abc=(ab)c=eln(2)​
Apply log rule: aloga​(b)=beln(2)=2=2​
=2​1​+2​e−2⋅41​ln(2)−e2⋅41​ln(2)​
e−2⋅41​ln(2)=2​1​
e−2⋅41​ln(2)
Multiply −2⋅41​ln(2):−21​ln(2)
−2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=−41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e−21​ln(2)
Apply exponent rule: abc=(ab)c=(eln(2))−21​
Apply log rule: aloga​(b)=beln(2)=2=2−21​
Apply exponent rule: a−b=ab1​=2​1​
e2⋅41​ln(2)=2​
e2⋅41​ln(2)
Multiply 2⋅41​ln(2):21​ln(2)
2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e21​ln(2)
Apply exponent rule: abc=(ab)c=eln(2)​
Apply log rule: aloga​(b)=beln(2)=2=2​
=2​1​+2​2​1​−2​​
Join 2​1​+2​:2​3​
2​1​+2​
Convert element to fraction: 2​=2​2​2​​=2​1​+2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1+2​2​​
1+2​2​=3
1+2​2​
Apply radical rule: a​a​=a2​2​=2=1+2
Add the numbers: 1+2=3=3
=2​3​
=2​3​2​1​−2​​
Join 2​1​−2​:−2​1​
2​1​−2​
Convert element to fraction: 2​=2​2​2​​=2​1​−2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1−2​2​​
1−2​2​=−1
1−2​2​
Apply radical rule: a​a​=a2​2​=2=1−2
Subtract the numbers: 1−2=−1=−1
=2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
=2​3​−2​1​​
Apply the fraction rule: b−a​=−ba​=−2​3​2​1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=−2​⋅31⋅2​​
Refine=−2​⋅32​​
Cancel the common factor: 2​=−31​
=1−31​1−e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​​
e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​=−31​
e−2⋅41​ln(2)+e2⋅41​ln(2)e−2⋅41​ln(2)−e2⋅41​ln(2)​
e−2⋅41​ln(2)=2​1​
e−2⋅41​ln(2)
Multiply −2⋅41​ln(2):−21​ln(2)
−2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=−41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e−21​ln(2)
Apply exponent rule: abc=(ab)c=(eln(2))−21​
Apply log rule: aloga​(b)=beln(2)=2=2−21​
Apply exponent rule: a−b=ab1​=2​1​
e2⋅41​ln(2)=2​
e2⋅41​ln(2)
Multiply 2⋅41​ln(2):21​ln(2)
2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e21​ln(2)
Apply exponent rule: abc=(ab)c=eln(2)​
Apply log rule: aloga​(b)=beln(2)=2=2​
=2​1​+2​e−2⋅41​ln(2)−e2⋅41​ln(2)​
e−2⋅41​ln(2)=2​1​
e−2⋅41​ln(2)
Multiply −2⋅41​ln(2):−21​ln(2)
−2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=−41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e−21​ln(2)
Apply exponent rule: abc=(ab)c=(eln(2))−21​
Apply log rule: aloga​(b)=beln(2)=2=2−21​
Apply exponent rule: a−b=ab1​=2​1​
e2⋅41​ln(2)=2​
e2⋅41​ln(2)
Multiply 2⋅41​ln(2):21​ln(2)
2⋅41​ln(2)
Multiply fractions: a⋅cb​=ca⋅b​=41⋅2​ln(2)
41⋅2​=21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
=21​
=e21​ln(2)
Apply exponent rule: abc=(ab)c=eln(2)​
Apply log rule: aloga​(b)=beln(2)=2=2​
=2​1​+2​2​1​−2​​
Join 2​1​+2​:2​3​
2​1​+2​
Convert element to fraction: 2​=2​2​2​​=2​1​+2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1+2​2​​
1+2​2​=3
1+2​2​
Apply radical rule: a​a​=a2​2​=2=1+2
Add the numbers: 1+2=3=3
=2​3​
=2​3​2​1​−2​​
Join 2​1​−2​:−2​1​
2​1​−2​
Convert element to fraction: 2​=2​2​2​​=2​1​−2​2​2​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2​1−2​2​​
1−2​2​=−1
1−2​2​
Apply radical rule: a​a​=a2​2​=2=1−2
Subtract the numbers: 1−2=−1=−1
=2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
=2​3​−2​1​​
Apply the fraction rule: b−a​=−ba​=−2​3​2​1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=−2​⋅31⋅2​​
Refine=−2​⋅32​​
Cancel the common factor: 2​=−31​
=1−31​1−(−31​)​
Simplify
1−31​1−(−31​)​
Apply rule −(−a)=a=1−31​1+31​​
Join 1−31​:32​
1−31​
Convert element to fraction: 1=31⋅3​=31⋅3​−31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3−1​
1⋅3−1=2
1⋅3−1
Multiply the numbers: 1⋅3=3=3−1
Subtract the numbers: 3−1=2=2
=32​
=32​1+31​​
Join 1+31​:34​
1+31​
Convert element to fraction: 1=31⋅3​=31⋅3​+31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=31⋅3+1​
1⋅3+1=4
1⋅3+1
Multiply the numbers: 1⋅3=3=3+1
Add the numbers: 3+1=4=4
=34​
=32​34​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=3⋅24⋅3​
Cancel the common factor: 3=24​
Divide the numbers: 24​=2=2
=2
2=2
True
The solution isx=−41​ln(2)
x=−41​ln(2)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

5sin(θ)-5cos(θ)=22cos(t)=sqrt(3)5sin(x)=sin(x)sin(3x)=3sin(x)arcsin(x)+arcsin(2x)= pi/3

Frequently Asked Questions (FAQ)

  • What is the general solution for (1-tanh(2x))/(1+tanh(2x))=2 ?

    The general solution for (1-tanh(2x))/(1+tanh(2x))=2 is x=-1/4 ln(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024