Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(x)+arcsin(2x)= pi/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(x)+arcsin(2x)=3π​

Solution

x=27​3​​
Solution steps
arcsin(x)+arcsin(2x)=3π​
Rewrite using trig identities
arcsin(x)+arcsin(2x)
Use the Sum to Product identity: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(x1−(2x)2​+2x1−x2​)
arcsin(x1−(2x)2​+2x1−x2​)=3π​
Apply trig inverse properties
arcsin(x1−(2x)2​+2x1−x2​)=3π​
arcsin(x)=a⇒x=sin(a)x1−(2x)2​+2x1−x2​=sin(3π​)
sin(3π​)=23​​
sin(3π​)
Use the following trivial identity:sin(3π​)=23​​
sin(3π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=23​​
=23​​
x1−(2x)2​+2x1−x2​=23​​
x1−(2x)2​+2x1−x2​=23​​
Solve x1−(2x)2​+2x1−x2​=23​​:x=21​,x=27​3​​
x1−(2x)2​+2x1−x2​=23​​
Multiply both sides by 2x1−(2x)2​⋅2+2x1−x2​⋅2=23​​⋅2
Simplify21−(2x)2​x+41−x2​x=3​
Remove square roots
21−(2x)2​x+41−x2​x=3​
Subtract 41−x2​x from both sides21−(2x)2​x+41−x2​x−41−x2​x=3​−41−x2​x
Simplify21−(2x)2​x=3​−41−x2​x
Square both sides:4x2−16x4=3−83​x1−x2​+16x2−16x4
21−(2x)2​x+41−x2​x=3​
(21−(2x)2​x)2=(3​−41−x2​x)2
Expand (21−(2x)2​x)2:4x2−16x4
(21−(2x)2​x)2
Apply exponent rule: (a⋅b)n=anbn=22x2(1−(2x)2​)2
(1−(2x)2​)2:1−(2x)2
Apply radical rule: a​=a21​=((1−(2x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(2x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(2x)2
=22(1−(2x)2)x2
22=4=4(1−(2x)2)x2
Expand 4(1−(2x)2)x2:4x2−16x4
4(1−(2x)2)x2
Apply exponent rule: (a⋅b)n=anbn=4x2(−22x2+1)
22=4=4x2(−4x2+1)
=4x2(1−4x2)
Apply the distributive law: a(b−c)=ab−aca=4x2,b=1,c=4x2=4x2⋅1−4x2⋅4x2
=4⋅1⋅x2−4⋅4x2x2
Simplify 4⋅1⋅x2−4⋅4x2x2:4x2−16x4
4⋅1⋅x2−4⋅4x2x2
4⋅1⋅x2=4x2
4⋅1⋅x2
Multiply the numbers: 4⋅1=4=4x2
4⋅4x2x2=16x4
4⋅4x2x2
Multiply the numbers: 4⋅4=16=16x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=16x2+2
Add the numbers: 2+2=4=16x4
=4x2−16x4
=4x2−16x4
=4x2−16x4
Expand (3​−41−x2​x)2:3−83​x1−x2​+16x2−16x4
(3​−41−x2​x)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=3​,b=41−x2​x
=(3​)2−23​⋅41−x2​x+(41−x2​x)2
Simplify (3​)2−23​⋅41−x2​x+(41−x2​x)2:3−83​1−x2​x+161−x2x2
(3​)2−23​⋅41−x2​x+(41−x2​x)2
(3​)2=3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
23​⋅41−x2​x=83​1−x2​x
23​⋅41−x2​x
Multiply the numbers: 2⋅4=8=83​1−x2​x
(41−x2​x)2=161−x2x2
(41−x2​x)2
Apply exponent rule: (a⋅b)n=anbn=42x2(1−x2​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=42(1−x2)x2
42=16=16(1−x2)x2
=3−83​1−x2​x+16(1−x2)x2
=3−83​1−x2​x+16(1−x2)x2
Expand 3−83​1−x2​x+16(1−x2)x2:3−83​x1−x2​+16x2−16x4
3−83​1−x2​x+16(1−x2)x2
=3−83​x1−x2​+16x2(1−x2)
Expand 16x2(1−x2):16x2−16x4
16x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=16x2,b=1,c=x2=16x2⋅1−16x2x2
=16⋅1⋅x2−16x2x2
Simplify 16⋅1⋅x2−16x2x2:16x2−16x4
16⋅1⋅x2−16x2x2
16⋅1⋅x2=16x2
16⋅1⋅x2
Multiply the numbers: 16⋅1=16=16x2
16x2x2=16x4
16x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=16x2+2
Add the numbers: 2+2=4=16x4
=16x2−16x4
=16x2−16x4
=3−83​1−x2​x+16x2−16x4
=3−83​x1−x2​+16x2−16x4
=3−83​x1−x2​+16x2−16x4
4x2−16x4=3−83​x1−x2​+16x2−16x4
4x2−16x4=3−83​x1−x2​+16x2−16x4
Subtract 16x2−16x4 from both sides4x2−16x4−(16x2−16x4)=3−83​x1−x2​+16x2−16x4−(16x2−16x4)
Simplify−12x2=−83​1−x2​x+3
Subtract 3 from both sides−12x2−3=−83​1−x2​x+3−3
Simplify−12x2−3=−83​1−x2​x
Square both sides:144x4+72x2+9=192x2−192x4
4x2−16x4=3−83​x1−x2​+16x2−16x4
(−12x2−3)2=(−83​1−x2​x)2
Expand (−12x2−3)2:144x4+72x2+9
(−12x2−3)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−12x2,b=3
=(−12x2)2−2(−12x2)⋅3+32
Simplify (−12x2)2−2(−12x2)⋅3+32:144x4+72x2+9
(−12x2)2−2(−12x2)⋅3+32
Apply rule −(−a)=a=(−12x2)2+2⋅12x2⋅3+32
(−12x2)2=144x4
(−12x2)2
Apply exponent rule: (−a)n=an,if n is even(−12x2)2=(12x2)2=(12x2)2
Apply exponent rule: (a⋅b)n=anbn=122(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=122x4
122=144=144x4
2⋅12x2⋅3=72x2
2⋅12x2⋅3
Multiply the numbers: 2⋅12⋅3=72=72x2
32=9
32
32=9=9
=144x4+72x2+9
=144x4+72x2+9
Expand (−83​1−x2​x)2:192x2−192x4
(−83​1−x2​x)2
Apply exponent rule: (−a)n=an,if n is even(−83​1−x2​x)2=(83​1−x2​x)2=(83​1−x2​x)2
Apply exponent rule: (a⋅b)n=anbn=82(3​)2x2(1−x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=82⋅3(1−x2​)2x2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=82⋅3(1−x2)x2
Refine=192(1−x2)x2
Expand 192(1−x2)x2:192x2−192x4
192(1−x2)x2
=192x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=192x2,b=1,c=x2=192x2⋅1−192x2x2
=192⋅1⋅x2−192x2x2
Simplify 192⋅1⋅x2−192x2x2:192x2−192x4
192⋅1⋅x2−192x2x2
192⋅1⋅x2=192x2
192⋅1⋅x2
Multiply the numbers: 192⋅1=192=192x2
192x2x2=192x4
192x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=192x2+2
Add the numbers: 2+2=4=192x4
=192x2−192x4
=192x2−192x4
=192x2−192x4
144x4+72x2+9=192x2−192x4
144x4+72x2+9=192x2−192x4
144x4+72x2+9=192x2−192x4
Solve 144x4+72x2+9=192x2−192x4:x=21​,x=−21​,x=27​3​​,x=−27​3​​
144x4+72x2+9=192x2−192x4
Move 192x4to the left side
144x4+72x2+9=192x2−192x4
Add 192x4 to both sides144x4+72x2+9+192x4=192x2−192x4+192x4
Simplify336x4+72x2+9=192x2
336x4+72x2+9=192x2
Move 192x2to the left side
336x4+72x2+9=192x2
Subtract 192x2 from both sides336x4+72x2+9−192x2=192x2−192x2
Simplify336x4−120x2+9=0
336x4−120x2+9=0
Rewrite the equation with u=x2 and u2=x4336u2−120u+9=0
Solve 336u2−120u+9=0:u=41​,u=283​
336u2−120u+9=0
Solve with the quadratic formula
336u2−120u+9=0
Quadratic Equation Formula:
For a=336,b=−120,c=9u1,2​=2⋅336−(−120)±(−120)2−4⋅336⋅9​​
u1,2​=2⋅336−(−120)±(−120)2−4⋅336⋅9​​
(−120)2−4⋅336⋅9​=48
(−120)2−4⋅336⋅9​
Apply exponent rule: (−a)n=an,if n is even(−120)2=1202=1202−4⋅336⋅9​
Multiply the numbers: 4⋅336⋅9=12096=1202−12096​
1202=14400=14400−12096​
Subtract the numbers: 14400−12096=2304=2304​
Factor the number: 2304=482=482​
Apply radical rule: 482​=48=48
u1,2​=2⋅336−(−120)±48​
Separate the solutionsu1​=2⋅336−(−120)+48​,u2​=2⋅336−(−120)−48​
u=2⋅336−(−120)+48​:41​
2⋅336−(−120)+48​
Apply rule −(−a)=a=2⋅336120+48​
Add the numbers: 120+48=168=2⋅336168​
Multiply the numbers: 2⋅336=672=672168​
Cancel the common factor: 168=41​
u=2⋅336−(−120)−48​:283​
2⋅336−(−120)−48​
Apply rule −(−a)=a=2⋅336120−48​
Subtract the numbers: 120−48=72=2⋅33672​
Multiply the numbers: 2⋅336=672=67272​
Cancel the common factor: 24=283​
The solutions to the quadratic equation are:u=41​,u=283​
u=41​,u=283​
Substitute back u=x2,solve for x
Solve x2=41​:x=21​,x=−21​
x2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=41​​,x=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
x=21​,x=−21​
Solve x2=283​:x=27​3​​,x=−27​3​​
x2=283​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=283​​,x=−283​​
283​​=27​3​​
283​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=28​3​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅7​=22​7​=22​7​
Apply radical rule: a2​=a,a≥022​=2=27​
=27​3​​
−283​​=−27​3​​
−283​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−28​3​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: ab​=a​b​,a≥0,b≥022⋅7​=22​7​=22​7​
Apply radical rule: a2​=a,a≥022​=2=27​
=−27​3​​
x=27​3​​,x=−27​3​​
The solutions are
x=21​,x=−21​,x=27​3​​,x=−27​3​​
x=21​,x=−21​,x=27​3​​,x=−27​3​​
Verify Solutions:x=21​True,x=−21​False,x=27​3​​True,x=−27​3​​False
Check the solutions by plugging them into x1−(2x)2​+2x1−x2​=23​​
Remove the ones that don't agree with the equation.
Plug in x=21​:True
(21​)1−(2(21​))2​+2(21​)1−(21​)2​=23​​
(21​)1−(2(21​))2​+2(21​)1−(21​)2​=23​​
(21​)1−(2(21​))2​+2(21​)1−(21​)2​
Remove parentheses: (a)=a=21​1−(2⋅21​)2​+2⋅21​1−(21​)2​
21​1−(2⋅21​)2​=0
21​1−(2⋅21​)2​
1−(2⋅21​)2​=0
1−(2⋅21​)2​
(2⋅21​)2=1
(2⋅21​)2
Multiply 2⋅21​:1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅21​
Apply rule 0⋅a=0=0
2⋅21​1−(21​)2​=23​​
2⋅21​1−(21​)2​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅21−(21​)2​​
Cancel the common factor: 2=1⋅1−(21​)2​
1−(21​)2​=23​​
1−(21​)2​
(21​)2=41​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=1⋅23​​
Multiply: 1⋅23​​=23​​=23​​
=0+23​​
0+23​​=23​​=23​​
23​​=23​​
True
Plug in x=−21​:False
(−21​)1−(2(−21​))2​+2(−21​)1−(−21​)2​=23​​
(−21​)1−(2(−21​))2​+2(−21​)1−(−21​)2​=−23​​
(−21​)1−(2(−21​))2​+2(−21​)1−(−21​)2​
Remove parentheses: (−a)=−a=−21​1−(−2⋅21​)2​−2⋅21​1−(−21​)2​
21​1−(−2⋅21​)2​=0
21​1−(−2⋅21​)2​
1−(−2⋅21​)2​=0
1−(−2⋅21​)2​
(−2⋅21​)2=1
(−2⋅21​)2
Multiply −2⋅21​:−1
−2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅2​
Cancel the common factor: 2=−1
=(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
=1−1​
Subtract the numbers: 1−1=0=0​
Apply rule 0​=0=0
=0⋅21​
Apply rule 0⋅a=0=0
2⋅21​1−(−21​)2​=23​​
2⋅21​1−(−21​)2​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅21−(−21​)2​​
Cancel the common factor: 2=1⋅1−(−21​)2​
1−(−21​)2​=23​​
1−(−21​)2​
(−21​)2=41​
(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=1⋅23​​
Multiply: 1⋅23​​=23​​=23​​
=−0−23​​
−0−23​​=−23​​=−23​​
−23​​=23​​
False
Plug in x=27​3​​:True
(27​3​​)1−(2(27​3​​))2​+2(27​3​​)1−(27​3​​)2​=23​​
(27​3​​)1−(2(27​3​​))2​+2(27​3​​)1−(27​3​​)2​=23​​
(27​3​​)1−(2(27​3​​))2​+2(27​3​​)1−(27​3​​)2​
Remove parentheses: (a)=a=27​3​​1−(2⋅27​3​​)2​+2⋅27​3​​1−(27​3​​)2​
27​3​​1−(2⋅27​3​​)2​=73​​
27​3​​1−(2⋅27​3​​)2​
1−(2⋅27​3​​)2​=7​2​
1−(2⋅27​3​​)2​
(2⋅27​3​​)2=73​
(2⋅27​3​​)2
Multiply 2⋅27​3​​:73​​
2⋅27​3​​
Multiply fractions: a⋅cb​=ca⋅b​=27​3​⋅2​
Cancel the common factor: 2=7​3​​
Combine same powers : y​x​​=yx​​=73​​
=(73​​)2
Apply radical rule: a​=a21​=((73​)21​)2
Apply exponent rule: (ab)c=abc=(73​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=73​
=1−73​​
Join 1−73​:74​
1−73​
Convert element to fraction: 1=71⋅7​=71⋅7​−73​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=71⋅7−3​
1⋅7−3=4
1⋅7−3
Multiply the numbers: 1⋅7=7=7−3
Subtract the numbers: 7−3=4=4
=74​
=74​​
Apply radical rule: assuming a≥0,b≥0=7​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=7​2​
=7​2​⋅27​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=27​7​3​⋅2​
Cancel the common factor: 2=7​7​3​​
7​7​=7
7​7​
Apply radical rule: a​a​=a7​7​=7=7
=73​​
2⋅27​3​​1−(27​3​​)2​=1453​​
2⋅27​3​​1−(27​3​​)2​
Multiply fractions: a⋅cb​=ca⋅b​=27​3​⋅21−(27​3​​)2​​
Cancel the common factor: 2=7​3​1−(27​3​​)2​​
1−(27​3​​)2​=27​5​
1−(27​3​​)2​
(27​3​​)2=283​
(27​3​​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(7​)23​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅73​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​
=1−283​​
Join 1−283​:2825​
1−283​
Convert element to fraction: 1=281⋅28​=281⋅28​−283​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−3​
1⋅28−3=25
1⋅28−3
Multiply the numbers: 1⋅28=28=28−3
Subtract the numbers: 28−3=25=25
=2825​
=2825​​
Apply radical rule: assuming a≥0,b≥0=28​25​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=27​5​
=7​3​27​5​​
Multiply 3​27​5​:27​53​​
3​27​5​
Multiply fractions: a⋅cb​=ca⋅b​=27​53​​
=7​27​53​​​
Apply the fraction rule: acb​​=c⋅ab​=27​7​53​​
27​7​=14
27​7​
Apply radical rule: a​a​=a7​7​=7=2⋅7
Multiply the numbers: 2⋅7=14=14
=1453​​
=73​​+1453​​
Least Common Multiplier of 7,14:14
7,14
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 14:2⋅7
14
14divides by 214=7⋅2=2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 14=7⋅2
Multiply the numbers: 7⋅2=14=14
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 14
For 73​​:multiply the denominator and numerator by 273​​=7⋅23​⋅2​=143​⋅2​
=143​⋅2​+1453​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=143​⋅2+53​​
Add similar elements: 23​+53​=73​=1473​​
Cancel the common factor: 7=23​​
23​​=23​​
True
Plug in x=−27​3​​:False
(−27​3​​)1−(2(−27​3​​))2​+2(−27​3​​)1−(−27​3​​)2​=23​​
(−27​3​​)1−(2(−27​3​​))2​+2(−27​3​​)1−(−27​3​​)2​=−23​​
(−27​3​​)1−(2(−27​3​​))2​+2(−27​3​​)1−(−27​3​​)2​
Remove parentheses: (−a)=−a=−27​3​​1−(−2⋅27​3​​)2​−2⋅27​3​​1−(−27​3​​)2​
27​3​​1−(−2⋅27​3​​)2​=73​​
27​3​​1−(−2⋅27​3​​)2​
1−(−2⋅27​3​​)2​=7​2​
1−(−2⋅27​3​​)2​
(−2⋅27​3​​)2=73​
(−2⋅27​3​​)2
Multiply −2⋅27​3​​:−73​​
−2⋅27​3​​
Multiply fractions: a⋅cb​=ca⋅b​=−27​3​⋅2​
Cancel the common factor: 2=−7​3​​
Combine same powers : y​x​​=yx​​=−73​​
=(−73​​)2
Apply exponent rule: (−a)n=an,if n is even(−73​​)2=(73​​)2=(73​​)2
Apply radical rule: a​=a21​=((73​)21​)2
Apply exponent rule: (ab)c=abc=(73​)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=73​
=1−73​​
Join 1−73​:74​
1−73​
Convert element to fraction: 1=71⋅7​=71⋅7​−73​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=71⋅7−3​
1⋅7−3=4
1⋅7−3
Multiply the numbers: 1⋅7=7=7−3
Subtract the numbers: 7−3=4=4
=74​
=74​​
Apply radical rule: assuming a≥0,b≥0=7​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=7​2​
=7​2​⋅27​3​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=27​7​3​⋅2​
Cancel the common factor: 2=7​7​3​​
7​7​=7
7​7​
Apply radical rule: a​a​=a7​7​=7=7
=73​​
2⋅27​3​​1−(−27​3​​)2​=1453​​
2⋅27​3​​1−(−27​3​​)2​
Multiply fractions: a⋅cb​=ca⋅b​=27​3​⋅21−(−27​3​​)2​​
Cancel the common factor: 2=7​3​1−(−27​3​​)2​​
3​1−(−27​3​​)2​=3​1−(27​3​​)2​
3​1−(−27​3​​)2​
1−(−27​3​​)2​=1−(27​3​​)2​
1−(−27​3​​)2​
Apply exponent rule: (−a)n=an,if n is even(−27​3​​)2=(27​3​​)2=1−(27​3​​)2​
=3​−(27​3​​)2+1​
=7​3​−(27​3​​)2+1​​
1−(27​3​​)2​=27​5​
1−(27​3​​)2​
(27​3​​)2=283​
(27​3​​)2
Apply exponent rule: (ba​)c=bcac​=(27​)2(3​)2​
Apply exponent rule: (a⋅b)n=anbn(27​)2=22(7​)2=22(7​)2(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=22(7​)23​
(7​)2:7
Apply radical rule: a​=a21​=(721​)2
Apply exponent rule: (ab)c=abc=721​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=7
=22⋅73​
22⋅7=28
22⋅7
22=4=4⋅7
Multiply the numbers: 4⋅7=28=28
=283​
=1−283​​
Join 1−283​:2825​
1−283​
Convert element to fraction: 1=281⋅28​=281⋅28​−283​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=281⋅28−3​
1⋅28−3=25
1⋅28−3
Multiply the numbers: 1⋅28=28=28−3
Subtract the numbers: 28−3=25=25
=2825​
=2825​​
Apply radical rule: assuming a≥0,b≥0=28​25​​
28​=27​
28​
Prime factorization of 28:22⋅7
28
28divides by 228=14⋅2=2⋅14
14divides by 214=7⋅2=2⋅2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅2⋅7
=22⋅7
=22⋅7​
Apply radical rule: =7​22​
Apply radical rule: 22​=2=27​
=27​25​​
25​=5
25​
Factor the number: 25=52=52​
Apply radical rule: 52​=5=5
=27​5​
=7​3​27​5​​
Multiply 3​27​5​:27​53​​
3​27​5​
Multiply fractions: a⋅cb​=ca⋅b​=27​53​​
=7​27​53​​​
Apply the fraction rule: acb​​=c⋅ab​=27​7​53​​
27​7​=14
27​7​
Apply radical rule: a​a​=a7​7​=7=2⋅7
Multiply the numbers: 2⋅7=14=14
=1453​​
=−73​​−1453​​
Least Common Multiplier of 7,14:14
7,14
Least Common Multiplier (LCM)
Prime factorization of 7:7
7
7 is a prime number, therefore no factorization is possible=7
Prime factorization of 14:2⋅7
14
14divides by 214=7⋅2=2⋅7
2,7 are all prime numbers, therefore no further factorization is possible=2⋅7
Multiply each factor the greatest number of times it occurs in either 7 or 14=7⋅2
Multiply the numbers: 7⋅2=14=14
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 14
For 73​​:multiply the denominator and numerator by 273​​=7⋅23​⋅2​=143​⋅2​
=−143​⋅2​−1453​​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=14−3​⋅2−53​​
Add similar elements: −23​−53​=−73​=14−73​​
Apply the fraction rule: b−a​=−ba​=−1473​​
Cancel the common factor: 7=−23​​
−23​​=23​​
False
The solutions arex=21​,x=27​3​​
x=21​,x=27​3​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(x)+arcsin(2x)=3π​
Remove the ones that don't agree with the equation.
Check the solution 21​:False
21​
Plug in n=121​
For arcsin(x)+arcsin(2x)=3π​plug inx=21​arcsin(21​)+arcsin(2⋅21​)=3π​
Refine2.09439…=1.04719…
⇒False
Check the solution 27​3​​:True
27​3​​
Plug in n=127​3​​
For arcsin(x)+arcsin(2x)=3π​plug inx=27​3​​arcsin(27​3​​)+arcsin(2⋅27​3​​)=3π​
Refine1.04719…=1.04719…
⇒True
x=27​3​​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(2x)= 4/3cos(x)-sqrt(1-3cos^2(x))=0arctan(2x-3)= pi/4cos(x)=-0,5tan(2x)+2cos(x)=0,0<= x<= 2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(x)+arcsin(2x)= pi/3 ?

    The general solution for arcsin(x)+arcsin(2x)= pi/3 is x=(sqrt(3))/(2sqrt(7))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024