Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)-sqrt(1-3cos^2(x))=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)−1−3cos2(x)​=0

Solution

x=3π​+2πn,x=35π​+2πn
+1
Degrees
x=60∘+360∘n,x=300∘+360∘n
Solution steps
cos(x)−1−3cos2(x)​=0
Solve by substitution
cos(x)−1−3cos2(x)​=0
Let: cos(x)=uu−1−3u2​=0
u−1−3u2​=0:u=21​
u−1−3u2​=0
Remove square roots
u−1−3u2​=0
Subtract u from both sidesu−1−3u2​−u=0−u
Simplify−1−3u2​=−u
Square both sides:1−3u2=u2
u−1−3u2​=0
(−1−3u2​)2=(−u)2
Expand (−1−3u2​)2:1−3u2
(−1−3u2​)2
Apply exponent rule: (−a)n=an,if n is even(−1−3u2​)2=(1−3u2​)2=(1−3u2​)2
Apply radical rule: a​=a21​=((1−3u2)21​)2
Apply exponent rule: (ab)c=abc=(1−3u2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−3u2
Expand (−u)2:u2
(−u)2
Apply exponent rule: (−a)n=an,if n is even(−u)2=u2=u2
1−3u2=u2
1−3u2=u2
1−3u2=u2
Solve 1−3u2=u2:u=21​,u=−21​
1−3u2=u2
Move 1to the right side
1−3u2=u2
Subtract 1 from both sides1−3u2−1=u2−1
Simplify−3u2=u2−1
−3u2=u2−1
Move u2to the left side
−3u2=u2−1
Subtract u2 from both sides−3u2−u2=u2−1−u2
Simplify−4u2=−1
−4u2=−1
Divide both sides by −4
−4u2=−1
Divide both sides by −4−4−4u2​=−4−1​
Simplifyu2=41​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
u=21​,u=−21​
Verify Solutions:u=21​True,u=−21​False
Check the solutions by plugging them into u−1−3u2​=0
Remove the ones that don't agree with the equation.
Plug in u=21​:True
(21​)−1−3(21​)2​=0
(21​)−1−3(21​)2​=0
(21​)−1−3(21​)2​
Remove parentheses: (a)=a=21​−1−3(21​)2​
1−3(21​)2​=21​
1−3(21​)2​
3(21​)2=43​
3(21​)2
(21​)2=221​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
=3⋅221​
Multiply fractions: a⋅cb​=ca⋅b​=221⋅3​
Multiply the numbers: 1⋅3=3=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=21​−21​
Add similar elements: 21​−21​=0=0
0=0
True
Plug in u=−21​:False
(−21​)−1−3(−21​)2​=0
(−21​)−1−3(−21​)2​=−1
(−21​)−1−3(−21​)2​
Remove parentheses: (−a)=−a=−21​−1−3(−21​)2​
1−3(−21​)2​=21​
1−3(−21​)2​
3(−21​)2=43​
3(−21​)2
(−21​)2=221​
(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
=3⋅221​
Multiply fractions: a⋅cb​=ca⋅b​=221⋅3​
Multiply the numbers: 1⋅3=3=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=−21​−21​
Apply rule ca​±cb​=ca±b​=2−1−1​
Subtract the numbers: −1−1=−2=2−2​
Apply the fraction rule: b−a​=−ba​=−22​
Apply rule aa​=1=−1
−1=0
False
The solution isu=21​
Substitute back u=cos(x)cos(x)=21​
cos(x)=21​
cos(x)=21​:x=3π​+2πn,x=35π​+2πn
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Combine all the solutionsx=3π​+2πn,x=35π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

arctan(2x-3)= pi/4cos(x)=-0,5tan(2x)+2cos(x)=0,0<= x<= 2pisin(x)+cos(x)*cot(x)=2tan(θ)= 6/12

Frequently Asked Questions (FAQ)

  • What is the general solution for cos(x)-sqrt(1-3cos^2(x))=0 ?

    The general solution for cos(x)-sqrt(1-3cos^2(x))=0 is x= pi/3+2pin,x=(5pi)/3+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024