Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arcsin(6x)+arcsin(6sqrt(3)x)=-pi/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arcsin(6x)+arcsin(63​x)=−2π​

Solution

x=−121​
Solution steps
arcsin(6x)+arcsin(63​x)=−2π​
Rewrite using trig identities
arcsin(6x)+arcsin(63​x)
Use the Sum to Product identity: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(6x1−(63​x)2​+63​x1−(6x)2​)
arcsin(6x1−(63​x)2​+63​x1−(6x)2​)=−2π​
Apply trig inverse properties
arcsin(6x1−(63​x)2​+63​x1−(6x)2​)=−2π​
arcsin(x)=a⇒x=sin(a)6x1−(63​x)2​+63​x1−(6x)2​=sin(−2π​)
sin(−2π​)=−1
sin(−2π​)
Use the following property: sin(−x)=−sin(x)sin(−2π​)=−sin(2π​)=−sin(2π​)
Use the following trivial identity:sin(2π​)=1
sin(2π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=−1
6x1−(63​x)2​+63​x1−(6x)2​=−1
6x1−(63​x)2​+63​x1−(6x)2​=−1
Solve 6x1−(63​x)2​+63​x1−(6x)2​=−1:x=−121​
6x1−(63​x)2​+63​x1−(6x)2​=−1
Remove square roots
6x1−(63​x)2​+63​x1−(6x)2​=−1
Subtract 63​x1−(6x)2​ from both sides6x1−(63​x)2​+63​x1−(6x)2​−63​x1−(6x)2​=−1−63​x1−(6x)2​
Simplify61−(63​x)2​x=−1−63​x1−(6x)2​
Square both sides:36x2−3888x4=1+123​x1−36x2​+108x2−3888x4
6x1−(63​x)2​+63​x1−(6x)2​=−1
(61−(63​x)2​x)2=(−1−63​x1−(6x)2​)2
Expand (61−(63​x)2​x)2:36x2−3888x4
(61−(63​x)2​x)2
Apply exponent rule: (a⋅b)n=anbn=62x2(1−(63​x)2​)2
(1−(63​x)2​)2:1−(63​x)2
Apply radical rule: a​=a21​=((1−(63​x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(63​x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(63​x)2
=62(1−(63​x)2)x2
62=36=36(1−(63​x)2)x2
Expand 36(1−(63​x)2)x2:36x2−3888x4
36(1−(63​x)2)x2
(63​x)2=62⋅3x2
(63​x)2
Apply exponent rule: (a⋅b)n=anbn=62(3​)2x2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=62⋅3x2
=36x2(−62⋅3x2+1)
62⋅3x2=108x2
62⋅3x2
62=36=36⋅3x2
Multiply the numbers: 36⋅3=108=108x2
=36x2(−108x2+1)
=36x2(1−108x2)
Apply the distributive law: a(b−c)=ab−aca=36x2,b=1,c=108x2=36x2⋅1−36x2⋅108x2
=36⋅1⋅x2−36⋅108x2x2
Simplify 36⋅1⋅x2−36⋅108x2x2:36x2−3888x4
36⋅1⋅x2−36⋅108x2x2
36⋅1⋅x2=36x2
36⋅1⋅x2
Multiply the numbers: 36⋅1=36=36x2
36⋅108x2x2=3888x4
36⋅108x2x2
Multiply the numbers: 36⋅108=3888=3888x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=3888x2+2
Add the numbers: 2+2=4=3888x4
=36x2−3888x4
=36x2−3888x4
=36x2−3888x4
Expand (−1−63​x1−(6x)2​)2:1+123​x1−36x2​+108x2−3888x4
(−1−63​x1−(6x)2​)2
=(−1−63​1−(6x)2​x)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−1,b=63​x1−(6x)2​
=(−1)2−2(−1)⋅63​x1−(6x)2​+(63​x1−(6x)2​)2
Simplify (−1)2−2(−1)⋅63​x1−(6x)2​+(63​x1−(6x)2​)2:1+123​1−(6x)2​x+1081−(6x)2x2
(−1)2−2(−1)⋅63​x1−(6x)2​+(63​x1−(6x)2​)2
Apply rule −(−a)=a=(−1)2+2⋅1⋅63​x1−(6x)2​+(63​x1−(6x)2​)2
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
2⋅1⋅63​x1−(6x)2​=123​1−(6x)2​x
2⋅1⋅63​x1−(6x)2​
Multiply the numbers: 2⋅1⋅6=12=123​1−(6x)2​x
(63​x1−(6x)2​)2=1081−(6x)2x2
(63​x1−(6x)2​)2
Apply exponent rule: (a⋅b)n=anbn=62(3​)2x2(1−(6x)2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=62⋅3x2(1−(6x)2​)2
(1−(6x)2​)2:1−(6x)2
Apply radical rule: a​=a21​=((1−(6x)2)21​)2
Apply exponent rule: (ab)c=abc=(1−(6x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−(6x)2
=62⋅3x2(1−(6x)2)
Refine=108(1−(6x)2)x2
=1+123​1−(6x)2​x+108(1−(6x)2)x2
=1+123​1−(6x)2​x+108(1−(6x)2)x2
Expand 1+123​1−(6x)2​x+108(1−(6x)2)x2:1+123​x1−36x2​+108x2−3888x4
1+123​1−(6x)2​x+108(1−(6x)2)x2
1−(6x)2​=1−36x2​
1−(6x)2​
(6x)2=36x2
(6x)2
Apply exponent rule: (a⋅b)n=anbn=62x2
62=36=36x2
=1−36x2​
=1+123​x−36x2+1​+108x2(−(6x)2+1)
(6x)2=36x2
(6x)2
Apply exponent rule: (a⋅b)n=anbn=62x2
62=36=36x2
=1+123​x−36x2+1​+108x2(−36x2+1)
=1+123​x1−36x2​+108x2(1−36x2)
Expand 108x2(1−36x2):108x2−3888x4
108x2(1−36x2)
Apply the distributive law: a(b−c)=ab−aca=108x2,b=1,c=36x2=108x2⋅1−108x2⋅36x2
=108⋅1⋅x2−108⋅36x2x2
Simplify 108⋅1⋅x2−108⋅36x2x2:108x2−3888x4
108⋅1⋅x2−108⋅36x2x2
108⋅1⋅x2=108x2
108⋅1⋅x2
Multiply the numbers: 108⋅1=108=108x2
108⋅36x2x2=3888x4
108⋅36x2x2
Multiply the numbers: 108⋅36=3888=3888x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=3888x2+2
Add the numbers: 2+2=4=3888x4
=108x2−3888x4
=108x2−3888x4
=1+123​1−36x2​x+108x2−3888x4
=1+123​x1−36x2​+108x2−3888x4
=1+123​x1−36x2​+108x2−3888x4
36x2−3888x4=1+123​x1−36x2​+108x2−3888x4
36x2−3888x4=1+123​x1−36x2​+108x2−3888x4
Subtract 108x2−3888x4 from both sides36x2−3888x4−(108x2−3888x4)=1+123​x1−36x2​+108x2−3888x4−(108x2−3888x4)
Simplify−72x2=123​1−36x2​x+1
Subtract 1 from both sides−72x2−1=123​1−36x2​x+1−1
Simplify−72x2−1=123​1−36x2​x
Square both sides:5184x4+144x2+1=432x2−15552x4
36x2−3888x4=1+123​x1−36x2​+108x2−3888x4
(−72x2−1)2=(123​1−36x2​x)2
Expand (−72x2−1)2:5184x4+144x2+1
(−72x2−1)2
Apply Perfect Square Formula: (a−b)2=a2−2ab+b2a=−72x2,b=1
=(−72x2)2−2(−72x2)⋅1+12
Simplify (−72x2)2−2(−72x2)⋅1+12:5184x4+144x2+1
(−72x2)2−2(−72x2)⋅1+12
Apply rule 1a=112=1=(−72x2)2−2⋅1⋅(−72x2)+1
Apply rule −(−a)=a=(−72x2)2+2⋅72x2⋅1+1
(−72x2)2=5184x4
(−72x2)2
Apply exponent rule: (−a)n=an,if n is even(−72x2)2=(72x2)2=(72x2)2
Apply exponent rule: (a⋅b)n=anbn=722(x2)2
(x2)2:x4
Apply exponent rule: (ab)c=abc=x2⋅2
Multiply the numbers: 2⋅2=4=x4
=722x4
722=5184=5184x4
2⋅72x2⋅1=144x2
2⋅72x2⋅1
Multiply the numbers: 2⋅72⋅1=144=144x2
=5184x4+144x2+1
=5184x4+144x2+1
Expand (123​1−36x2​x)2:432x2−15552x4
(123​1−36x2​x)2
Apply exponent rule: (a⋅b)n=anbn=122(3​)2x2(1−36x2​)2
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=122⋅3(1−36x2​)2x2
(1−36x2​)2:1−36x2
Apply radical rule: a​=a21​=((1−36x2)21​)2
Apply exponent rule: (ab)c=abc=(1−36x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−36x2
=122⋅3(1−36x2)x2
Refine=432(1−36x2)x2
Expand 432(1−36x2)x2:432x2−15552x4
432(1−36x2)x2
=432x2(1−36x2)
Apply the distributive law: a(b−c)=ab−aca=432x2,b=1,c=36x2=432x2⋅1−432x2⋅36x2
=432⋅1⋅x2−432⋅36x2x2
Simplify 432⋅1⋅x2−432⋅36x2x2:432x2−15552x4
432⋅1⋅x2−432⋅36x2x2
432⋅1⋅x2=432x2
432⋅1⋅x2
Multiply the numbers: 432⋅1=432=432x2
432⋅36x2x2=15552x4
432⋅36x2x2
Multiply the numbers: 432⋅36=15552=15552x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=15552x2+2
Add the numbers: 2+2=4=15552x4
=432x2−15552x4
=432x2−15552x4
=432x2−15552x4
5184x4+144x2+1=432x2−15552x4
5184x4+144x2+1=432x2−15552x4
5184x4+144x2+1=432x2−15552x4
Solve 5184x4+144x2+1=432x2−15552x4:x=121​,x=−121​
5184x4+144x2+1=432x2−15552x4
Move 15552x4to the left side
5184x4+144x2+1=432x2−15552x4
Add 15552x4 to both sides5184x4+144x2+1+15552x4=432x2−15552x4+15552x4
Simplify20736x4+144x2+1=432x2
20736x4+144x2+1=432x2
Move 432x2to the left side
20736x4+144x2+1=432x2
Subtract 432x2 from both sides20736x4+144x2+1−432x2=432x2−432x2
Simplify20736x4−288x2+1=0
20736x4−288x2+1=0
Divide both sides by 207362073620736x4​−20736288x2​+207361​=207360​
Write in the standard form an​xn+…+a1​x+a0​=0x4−72x2​+207361​=0
Rewrite the equation with u=x2 and u2=x4u2−72u​+207361​=0
Solve u2−72u​+207361​=0:u=1441​
u2−72u​+207361​=0
Find Least Common Multiplier of 72,20736:20736
72,20736
Least Common Multiplier (LCM)
Prime factorization of 72:2⋅2⋅2⋅3⋅3
72
72divides by 272=36⋅2=2⋅36
36divides by 236=18⋅2=2⋅2⋅18
18divides by 218=9⋅2=2⋅2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅3
Prime factorization of 20736:2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3
20736
20736divides by 220736=10368⋅2=2⋅10368
10368divides by 210368=5184⋅2=2⋅2⋅5184
5184divides by 25184=2592⋅2=2⋅2⋅2⋅2592
2592divides by 22592=1296⋅2=2⋅2⋅2⋅2⋅1296
1296divides by 21296=648⋅2=2⋅2⋅2⋅2⋅2⋅648
648divides by 2648=324⋅2=2⋅2⋅2⋅2⋅2⋅2⋅324
324divides by 2324=162⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅162
162divides by 2162=81⋅2=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅81
81divides by 381=27⋅3=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅27
27divides by 327=9⋅3=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅9
9divides by 39=3⋅3=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 72 or 20736=2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3
Multiply the numbers: 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3=20736=20736
Multiply by LCM=20736u2⋅20736−72u​⋅20736+207361​⋅20736=0⋅20736
Simplify20736u2−288u+1=0
Divide both sides by 207362073620736u2​−20736288u​+207361​=207360​
Write in the standard form ax2+bx+c=0u2−72u​+207361​=0
Solve with the quadratic formula
u2−72u​+207361​=0
Quadratic Equation Formula:
For a=1,b=−721​,c=207361​u1,2​=2⋅1−(−721​)±(−721​)2−4⋅1⋅207361​​​
u1,2​=2⋅1−(−721​)±(−721​)2−4⋅1⋅207361​​​
(−721​)2−4⋅1⋅207361​=0
(−721​)2−4⋅1⋅207361​
(−721​)2=7221​
(−721​)2
Apply exponent rule: (−a)n=an,if n is even(−721​)2=(721​)2=(721​)2
Apply exponent rule: (ba​)c=bcac​=72212​
Apply rule 1a=112=1=7221​
4⋅1⋅207361​=51841​
4⋅1⋅207361​
Multiply fractions: a⋅cb​=ca⋅b​=1⋅207361⋅4​
207361⋅4​=51841​
207361⋅4​
Multiply the numbers: 1⋅4=4=207364​
Cancel the common factor: 4=51841​
=1⋅51841​
Multiply: 1⋅51841​=51841​=51841​
=7221​−51841​
722=5184=51841​−51841​
Add similar elements: 51841​−51841​=0=0
u1,2​=2⋅1−(−721​)±0​​
u=2⋅1−(−721​)​
2⋅1−(−721​)​=1441​
2⋅1−(−721​)​
Apply rule −(−a)=a=2⋅1721​​
Multiply the numbers: 2⋅1=2=2721​​
Apply the fraction rule: acb​​=c⋅ab​=72⋅21​
Multiply the numbers: 72⋅2=144=1441​
u=1441​
The solution to the quadratic equation is:u=1441​
u=1441​
Substitute back u=x2,solve for x
Solve x2=1441​:x=121​,x=−121​
x2=1441​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=1441​​,x=−1441​​
1441​​=121​
1441​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=144​1​​
Apply radical rule: 1​=11​=1=144​1​
144​=12
144​
Factor the number: 144=122=122​
Apply radical rule: a2​=a,a≥0122​=12=12
=121​
−1441​​=−121​
−1441​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−144​1​​
Apply radical rule: 1​=11​=1=−144​1​
144​=12
144​
Factor the number: 144=122=122​
Apply radical rule: a2​=a,a≥0122​=12=12
=−121​
x=121​,x=−121​
The solutions are
x=121​,x=−121​
x=121​,x=−121​
Verify Solutions:x=121​False,x=−121​True
Check the solutions by plugging them into 6x1−(63​x)2​+63​x1−(6x)2​=−1
Remove the ones that don't agree with the equation.
Plug in x=121​:False
6(121​)1−(63​(121​))2​+63​(121​)1−(6(121​))2​=−1
6(121​)1−(63​(121​))2​+63​(121​)1−(6(121​))2​=1
6(121​)1−(63​(121​))2​+63​(121​)1−(6(121​))2​
Remove parentheses: (a)=a=6⋅121​1−(63​121​)2​+63​121​1−(6⋅121​)2​
6⋅121​1−(63​121​)2​=41​
6⋅121​1−(63​121​)2​
1−(63​121​)2​=21​
1−(63​121​)2​
(63​121​)2=43​
(63​121​)2
Multiply 63​121​:23​​
63​121​
Multiply fractions: a⋅cb​=ca⋅b​=121⋅63​​
Multiply the numbers: 1⋅6=6=1263​​
Cancel the common factor: 6=23​​
=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=6⋅21​⋅121​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=12⋅21⋅1⋅6​
Multiply the numbers: 1⋅1⋅6=6=12⋅26​
Multiply the numbers: 12⋅2=24=246​
Cancel the common factor: 6=41​
63​121​1−(6⋅121​)2​=43​
63​121​1−(6⋅121​)2​
1−(6⋅121​)2​=23​​
1−(6⋅121​)2​
(6⋅121​)2=41​
(6⋅121​)2
Multiply 6⋅121​:21​
6⋅121​
Multiply fractions: a⋅cb​=ca⋅b​=121⋅6​
Multiply the numbers: 1⋅6=6=126​
Cancel the common factor: 6=21​
=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=63​121​⋅23​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=12⋅21⋅3​⋅63​​
1⋅3​⋅63​=18
1⋅3​⋅63​
Multiply the numbers: 1⋅6=6=63​3​
Apply radical rule: a​a​=a3​3​=3=6⋅3
Multiply the numbers: 6⋅3=18=18
=12⋅218​
Multiply the numbers: 12⋅2=24=2418​
Cancel the common factor: 6=43​
=41​+43​
Apply rule ca​±cb​=ca±b​=41+3​
Add the numbers: 1+3=4=44​
Apply rule aa​=1=1
1=−1
False
Plug in x=−121​:True
6(−121​)1−(63​(−121​))2​+63​(−121​)1−(6(−121​))2​=−1
6(−121​)1−(63​(−121​))2​+63​(−121​)1−(6(−121​))2​=−1
6(−121​)1−(63​(−121​))2​+63​(−121​)1−(6(−121​))2​
Remove parentheses: (−a)=−a=−6⋅121​1−(−63​121​)2​−63​121​1−(−6⋅121​)2​
6⋅121​1−(−63​121​)2​=41​
6⋅121​1−(−63​121​)2​
1−(−63​121​)2​=21​
1−(−63​121​)2​
(−63​121​)2=43​
(−63​121​)2
Multiply −63​121​:−23​​
−63​121​
Multiply fractions: a⋅cb​=ca⋅b​=−121⋅63​​
Multiply the numbers: 1⋅6=6=−1263​​
Cancel the common factor: 6=−23​​
=(−23​​)2
Apply exponent rule: (−a)n=an,if n is even(−23​​)2=(23​​)2=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=6⋅21​⋅121​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=12⋅21⋅1⋅6​
Multiply the numbers: 1⋅1⋅6=6=12⋅26​
Multiply the numbers: 12⋅2=24=246​
Cancel the common factor: 6=41​
63​121​1−(−6⋅121​)2​=43​
63​121​1−(−6⋅121​)2​
1−(−6⋅121​)2​=23​​
1−(−6⋅121​)2​
(−6⋅121​)2=41​
(−6⋅121​)2
Multiply −6⋅121​:−21​
−6⋅121​
Multiply fractions: a⋅cb​=ca⋅b​=−121⋅6​
Multiply the numbers: 1⋅6=6=−126​
Cancel the common factor: 6=−21​
=(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
22=4=41​
=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=63​121​⋅23​​
Multiply fractions: a⋅cb​⋅ed​=c⋅ea⋅b⋅d​=12⋅21⋅3​⋅63​​
1⋅3​⋅63​=18
1⋅3​⋅63​
Multiply the numbers: 1⋅6=6=63​3​
Apply radical rule: a​a​=a3​3​=3=6⋅3
Multiply the numbers: 6⋅3=18=18
=12⋅218​
Multiply the numbers: 12⋅2=24=2418​
Cancel the common factor: 6=43​
=−41​−43​
Apply rule ca​±cb​=ca±b​=4−1−3​
Subtract the numbers: −1−3=−4=4−4​
Apply the fraction rule: b−a​=−ba​=−44​
Apply rule aa​=1=−1
−1=−1
True
The solution isx=−121​
x=−121​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arcsin(6x)+arcsin(63​x)=−2π​
Remove the ones that don't agree with the equation.
Check the solution −121​:True
−121​
Plug in n=1−121​
For arcsin(6x)+arcsin(63​x)=−2π​plug inx=−121​arcsin(6(−121​))+arcsin(63​(−121​))=−2π​
Refine−1.57079…=−1.57079…
⇒True
x=−121​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)= 1/2 ,0<= x<= 3604+4sin(θ)= 3/(1-sin(θ))solvefor x,z=arctan(xy)(sin(x)-5)(sin(x)-1)=0sin(6x)= 1/2

Frequently Asked Questions (FAQ)

  • What is the general solution for arcsin(6x)+arcsin(6sqrt(3)x)=-pi/2 ?

    The general solution for arcsin(6x)+arcsin(6sqrt(3)x)=-pi/2 is x=-1/12
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024