Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(4x)-sec(2x)=2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(4x)−sec(2x)=2

Solution

x=2π​+πn,x=20.62831…​+πn,x=π−20.62831…​+πn,x=21.88495…​+πn,x=−21.88495…​+πn
+1
Degrees
x=90∘+180∘n,x=18∘+180∘n,x=162∘+180∘n,x=54∘+180∘n,x=−54∘+180∘n
Solution steps
sec(4x)−sec(2x)=2
Subtract 2 from both sidessec(4x)−sec(2x)−2=0
Rewrite using trig identities
−2−sec(2x)+sec(4x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=−2−cos(2x)1​+cos(4x)1​
cos(4x)=2cos2(2x)−1
cos(4x)
Rewrite as=cos(2⋅2x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1cos(2⋅2x)=2cos2(2x)−1=2cos2(2x)−1
=−2−cos(2x)1​+2cos2(2x)−11​
−2+−1+2cos2(2x)1​−cos(2x)1​=0
Solve by substitution
−2+−1+2cos2(2x)1​−cos(2x)1​=0
Let: cos(2x)=u−2+−1+2u21​−u1​=0
−2+−1+2u21​−u1​=0:u=−1,u=41+5​​,u=41−5​​
−2+−1+2u21​−u1​=0
Multiply by LCM
−2+−1+2u21​−u1​=0
Find Least Common Multiplier of −1+2u2,u:u(2​u+1)(2​u−1)
−1+2u2,u
Lowest Common Multiplier (LCM)
Factor the expressions
Factor −1+2u2:(2​u+1)(2​u−1)
−1+2u2
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
Compute an expression comprised of factors that appear either in (2​u+1)(2​u−1) or u=u(2​u+1)(2​u−1)
Multiply by LCM=u(2​u+1)(2​u−1)−2u(2​u+1)(2​u−1)+−1+2u21​u(2​u+1)(2​u−1)−u1​u(2​u+1)(2​u−1)=0⋅u(2​u+1)(2​u−1)
Simplify
−2u(2​u+1)(2​u−1)+−1+2u21​u(2​u+1)(2​u−1)−u1​u(2​u+1)(2​u−1)=0⋅u(2​u+1)(2​u−1)
Simplify −1+2u21​u(2​u+1)(2​u−1):u
−1+2u21​u(2​u+1)(2​u−1)
Multiply fractions: a⋅cb​=ca⋅b​=−1+2u21⋅u(2​u+1)(2​u−1)​
Multiply: 1⋅u=u=−1+2u2u(2​u+1)(2​u−1)​
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=(2​u+1)(2​u−1)u(2​u+1)(2​u−1)​
Cancel (2​u+1)(2​u−1)u(2​u+1)(2​u−1)​:u
(2​u+1)(2​u−1)u(2​u+1)(2​u−1)​
Cancel the common factor: 2​u+1=2​u−1u(2​u−1)​
Cancel the common factor: 2​u−1=u
=u
Simplify −u1​u(2​u+1)(2​u−1):−(2​u+1)(2​u−1)
−u1​u(2​u+1)(2​u−1)
Multiply fractions: a⋅cb​=ca⋅b​=−u1⋅u(2​u+1)(2​u−1)​
Cancel the common factor: u=−1⋅(2​u+1)(2​u−1)
Multiply: 1⋅(2​u+1)=(2​u+1)=−(2​u+1)(2​u−1)
Simplify 0⋅u(2​u+1)(2​u−1):0
0⋅u(2​u+1)(2​u−1)
Apply rule 0⋅a=0=0
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)=0
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)=0
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)=0
Solve −2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)=0:u=−1,u=41+5​​,u=41−5​​
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)=0
Factor −2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1):−(u+1)(4u2−2u−1)
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)
Expand −2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1):−4u3+3u−2u2+1
−2u(2​u+1)(2​u−1)+u−(2​u+1)(2​u−1)
Expand −2u(2​u+1)(2​u−1):−4u3+2u
Expand (2​u+1)(2​u−1):2u2−1
(2​u+1)(2​u−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2​u,b=1=(2​u)2−12
Simplify (2​u)2−12:2u2−1
(2​u)2−12
Apply rule 1a=112=1=(2​u)2−1
(2​u)2=2u2
(2​u)2
Apply exponent rule: (a⋅b)n=anbn=(2​)2u2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2u2
=2u2−1
=2u2−1
=−2u(2u2−1)
Expand −2u(2u2−1):−4u3+2u
−2u(2u2−1)
Apply the distributive law: a(b−c)=ab−aca=−2u,b=2u2,c=1=−2u⋅2u2−(−2u)⋅1
Apply minus-plus rules−(−a)=a=−2⋅2u2u+2⋅1⋅u
Simplify −2⋅2u2u+2⋅1⋅u:−4u3+2u
−2⋅2u2u+2⋅1⋅u
2⋅2u2u=4u3
2⋅2u2u
Multiply the numbers: 2⋅2=4=4u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=4u2+1
Add the numbers: 2+1=3=4u3
2⋅1⋅u=2u
2⋅1⋅u
Multiply the numbers: 2⋅1=2=2u
=−4u3+2u
=−4u3+2u
=−4u3+2u
=−4u3+2u+u−(2​u+1)(2​u−1)
Expand −(2​u+1)(2​u−1):−2u2+1
Expand (2​u+1)(2​u−1):2u2−1
(2​u+1)(2​u−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2​u,b=1=(2​u)2−12
Simplify (2​u)2−12:2u2−1
(2​u)2−12
Apply rule 1a=112=1=(2​u)2−1
(2​u)2=2u2
(2​u)2
Apply exponent rule: (a⋅b)n=anbn=(2​)2u2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2u2
=2u2−1
=2u2−1
=−(2u2−1)
Distribute parentheses=−(2u2)−(−1)
Apply minus-plus rules−(−a)=a,−(a)=−a=−2u2+1
=−4u3+2u+u−2u2+1
Add similar elements: 2u+u=3u=−4u3+3u−2u2+1
=−4u3+3u−2u2+1
Factor −4u3−2u2+3u+1:−(u+1)(4u2−2u−1)
−4u3−2u2+3u+1
Factor out common term −1=−(4u3+2u2−3u−1)
Factor 4u3+2u2−3u−1:(u+1)(4u2−2u−1)
4u3+2u2−3u−1
Use the rational root theorem
a0​=1,an​=4
The dividers of a0​:1,The dividers of an​:1,2,4
Therefore, check the following rational numbers:±1,2,41​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+14u3+2u2−3u−1​
u+14u3+2u2−3u−1​=4u2−2u−1
u+14u3+2u2−3u−1​
Divide u+14u3+2u2−3u−1​:u+14u3+2u2−3u−1​=4u2+u+1−2u2−3u−1​
Divide the leading coefficients of the numerator 4u3+2u2−3u−1
and the divisor u+1:u4u3​=4u2
Quotient=4u2
Multiply u+1 by 4u2:4u3+4u2Subtract 4u3+4u2 from 4u3+2u2−3u−1 to get new remainderRemainder=−2u2−3u−1
Thereforeu+14u3+2u2−3u−1​=4u2+u+1−2u2−3u−1​
=4u2+u+1−2u2−3u−1​
Divide u+1−2u2−3u−1​:u+1−2u2−3u−1​=−2u+u+1−u−1​
Divide the leading coefficients of the numerator −2u2−3u−1
and the divisor u+1:u−2u2​=−2u
Quotient=−2u
Multiply u+1 by −2u:−2u2−2uSubtract −2u2−2u from −2u2−3u−1 to get new remainderRemainder=−u−1
Thereforeu+1−2u2−3u−1​=−2u+u+1−u−1​
=4u2−2u+u+1−u−1​
Divide u+1−u−1​:u+1−u−1​=−1
Divide the leading coefficients of the numerator −u−1
and the divisor u+1:u−u​=−1
Quotient=−1
Multiply u+1 by −1:−u−1Subtract −u−1 from −u−1 to get new remainderRemainder=0
Thereforeu+1−u−1​=−1
=4u2−2u−1
=4u2−2u−1
=(u+1)(4u2−2u−1)
=−(u+1)(4u2−2u−1)
=−(u+1)(4u2−2u−1)
−(u+1)(4u2−2u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0or4u2−2u−1=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve 4u2−2u−1=0:u=41+5​​,u=41−5​​
4u2−2u−1=0
Solve with the quadratic formula
4u2−2u−1=0
Quadratic Equation Formula:
For a=4,b=−2,c=−1u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
u1,2​=2⋅4−(−2)±(−2)2−4⋅4(−1)​​
(−2)2−4⋅4(−1)​=25​
(−2)2−4⋅4(−1)​
Apply rule −(−a)=a=(−2)2+4⋅4⋅1​
Apply exponent rule: (−a)n=an,if n is even(−2)2=22=22+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22+16​
22=4=4+16​
Add the numbers: 4+16=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
u1,2​=2⋅4−(−2)±25​​
Separate the solutionsu1​=2⋅4−(−2)+25​​,u2​=2⋅4−(−2)−25​​
u=2⋅4−(−2)+25​​:41+5​​
2⋅4−(−2)+25​​
Apply rule −(−a)=a=2⋅42+25​​
Multiply the numbers: 2⋅4=8=82+25​​
Factor 2+25​:2(1+5​)
2+25​
Rewrite as=2⋅1+25​
Factor out common term 2=2(1+5​)
=82(1+5​)​
Cancel the common factor: 2=41+5​​
u=2⋅4−(−2)−25​​:41−5​​
2⋅4−(−2)−25​​
Apply rule −(−a)=a=2⋅42−25​​
Multiply the numbers: 2⋅4=8=82−25​​
Factor 2−25​:2(1−5​)
2−25​
Rewrite as=2⋅1−25​
Factor out common term 2=2(1−5​)
=82(1−5​)​
Cancel the common factor: 2=41−5​​
The solutions to the quadratic equation are:u=41+5​​,u=41−5​​
The solutions areu=−1,u=41+5​​,u=41−5​​
u=−1,u=41+5​​,u=41−5​​
Verify Solutions
Find undefined (singularity) points:u=2​1​,u=−2​1​,u=0
Take the denominator(s) of −2+−1+2u21​−u1​ and compare to zero
Solve −1+2u2=0:u=2​1​,u=−2​1​
−1+2u2=0
Move 1to the right side
−1+2u2=0
Add 1 to both sides−1+2u2+1=0+1
Simplify2u2=1
2u2=1
Divide both sides by 2
2u2=1
Divide both sides by 222u2​=21​
Simplifyu2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
21​​=2​1​
21​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=2​1​​
Apply radical rule: 1​=11​=1=2​1​
−21​​=−2​1​
−21​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−2​1​​
Apply radical rule: 1​=11​=1=−2​1​
u=2​1​,u=−2​1​
u=0
The following points are undefinedu=2​1​,u=−2​1​,u=0
Combine undefined points with solutions:
u=−1,u=41+5​​,u=41−5​​
Substitute back u=cos(2x)cos(2x)=−1,cos(2x)=41+5​​,cos(2x)=41−5​​
cos(2x)=−1,cos(2x)=41+5​​,cos(2x)=41−5​​
cos(2x)=−1:x=2π​+πn
cos(2x)=−1
General solutions for cos(2x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=π+2πn
2x=π+2πn
Solve 2x=π+2πn:x=2π​+πn
2x=π+2πn
Divide both sides by 2
2x=π+2πn
Divide both sides by 222x​=2π​+22πn​
Simplifyx=2π​+πn
x=2π​+πn
x=2π​+πn
cos(2x)=41+5​​:x=2arccos(41+5​​)​+πn,x=π−2arccos(41+5​​)​+πn
cos(2x)=41+5​​
Apply trig inverse properties
cos(2x)=41+5​​
General solutions for cos(2x)=41+5​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πn2x=arccos(41+5​​)+2πn,2x=2π−arccos(41+5​​)+2πn
2x=arccos(41+5​​)+2πn,2x=2π−arccos(41+5​​)+2πn
Solve 2x=arccos(41+5​​)+2πn:x=2arccos(41+5​​)​+πn
2x=arccos(41+5​​)+2πn
Divide both sides by 2
2x=arccos(41+5​​)+2πn
Divide both sides by 222x​=2arccos(41+5​​)​+22πn​
Simplifyx=2arccos(41+5​​)​+πn
x=2arccos(41+5​​)​+πn
Solve 2x=2π−arccos(41+5​​)+2πn:x=π−2arccos(41+5​​)​+πn
2x=2π−arccos(41+5​​)+2πn
Divide both sides by 2
2x=2π−arccos(41+5​​)+2πn
Divide both sides by 222x​=22π​−2arccos(41+5​​)​+22πn​
Simplifyx=π−2arccos(41+5​​)​+πn
x=π−2arccos(41+5​​)​+πn
x=2arccos(41+5​​)​+πn,x=π−2arccos(41+5​​)​+πn
cos(2x)=41−5​​:x=2arccos(41−5​​)​+πn,x=−2arccos(41−5​​)​+πn
cos(2x)=41−5​​
Apply trig inverse properties
cos(2x)=41−5​​
General solutions for cos(2x)=41−5​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πn2x=arccos(41−5​​)+2πn,2x=−arccos(41−5​​)+2πn
2x=arccos(41−5​​)+2πn,2x=−arccos(41−5​​)+2πn
Solve 2x=arccos(41−5​​)+2πn:x=2arccos(41−5​​)​+πn
2x=arccos(41−5​​)+2πn
Divide both sides by 2
2x=arccos(41−5​​)+2πn
Divide both sides by 222x​=2arccos(41−5​​)​+22πn​
Simplifyx=2arccos(41−5​​)​+πn
x=2arccos(41−5​​)​+πn
Solve 2x=−arccos(41−5​​)+2πn:x=−2arccos(41−5​​)​+πn
2x=−arccos(41−5​​)+2πn
Divide both sides by 2
2x=−arccos(41−5​​)+2πn
Divide both sides by 222x​=−2arccos(41−5​​)​+22πn​
Simplifyx=−2arccos(41−5​​)​+πn
x=−2arccos(41−5​​)​+πn
x=2arccos(41−5​​)​+πn,x=−2arccos(41−5​​)​+πn
Combine all the solutionsx=2π​+πn,x=2arccos(41+5​​)​+πn,x=π−2arccos(41+5​​)​+πn,x=2arccos(41−5​​)​+πn,x=−2arccos(41−5​​)​+πn
Show solutions in decimal formx=2π​+πn,x=20.62831…​+πn,x=π−20.62831…​+πn,x=21.88495…​+πn,x=−21.88495…​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

-cos(x)=1cot(x)sin(x)-sin(x)=01.16cos(θ)+0.532cos(θ)-0.557=0arcsin(6x)+arcsin(6sqrt(3)x)=-pi/2cos(x)= 1/2 ,0<= x<= 360
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024