Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(x)-1= 1/(cot(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)−1=cot(x)1​

Solution

x=4π​+πn
+1
Degrees
x=45∘+180∘n
Solution steps
sec2(x)−1=cot(x)1​
Square both sides(sec2(x)−1)2=(cot(x)1​)2
Subtract (cot(x)1​)2 from both sides(sec2(x)−1)2−cot2(x)1​=0
Simplify (sec2(x)−1)2−cot2(x)1​:cot2(x)cot2(x)(sec2(x)−1)2−1​
(sec2(x)−1)2−cot2(x)1​
Convert element to fraction: (sec2(x)−1)2=cot2(x)(sec2(x)−1)2cot2(x)​=cot2(x)(sec2(x)−1)2cot2(x)​−cot2(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cot2(x)(sec2(x)−1)2cot2(x)−1​
cot2(x)cot2(x)(sec2(x)−1)2−1​=0
g(x)f(x)​=0⇒f(x)=0cot2(x)(sec2(x)−1)2−1=0
Rewrite using trig identities
−1+(−1+sec2(x))2cot2(x)
Use the Pythagorean identity: sec2(x)=tan2(x)+1sec2(x)−1=tan2(x)=−1+(tan2(x))2cot2(x)
(tan2(x))2=tan4(x)
(tan2(x))2
Apply exponent rule: (ab)c=abc=tan2⋅2(x)
Multiply the numbers: 2⋅2=4=tan4(x)
=−1+tan4(x)cot2(x)
−1+cot2(x)tan4(x)=0
Factor −1+cot2(x)tan4(x):(tan2(x)cot(x)+1)(tan2(x)cot(x)−1)
−1+cot2(x)tan4(x)
Rewrite −1+cot2(x)tan4(x) as −1+(cot(x)tan2(x))2
−1+cot2(x)tan4(x)
Apply exponent rule: abc=(ab)ctan4(x)=(tan2(x))2=−1+cot2(x)(tan2(x))2
Apply exponent rule: ambm=(ab)mcot2(x)(tan2(x))2=(cot(x)tan2(x))2=−1+(cot(x)tan2(x))2
=−1+(cot(x)tan2(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)−1+(cot(x)tan2(x))2=(cot(x)tan2(x)+1)(cot(x)tan2(x)−1)=(cot(x)tan2(x)+1)(cot(x)tan2(x)−1)
(tan2(x)cot(x)+1)(tan2(x)cot(x)−1)=0
Solving each part separatelytan2(x)cot(x)+1=0ortan2(x)cot(x)−1=0
tan2(x)cot(x)+1=0:x=43π​+πn
tan2(x)cot(x)+1=0
Rewrite using trig identities
1+cot(x)tan2(x)
Use the basic trigonometric identity: tan(x)=cot(x)1​=1+cot(x)(cot(x)1​)2
cot(x)(cot(x)1​)2=cot(x)1​
cot(x)(cot(x)1​)2
(cot(x)1​)2=cot2(x)1​
(cot(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(x)12​
Apply rule 1a=112=1=cot2(x)1​
=cot2(x)1​cot(x)
Multiply fractions: a⋅cb​=ca⋅b​=cot2(x)1⋅cot(x)​
Multiply: 1⋅cot(x)=cot(x)=cot2(x)cot(x)​
Cancel the common factor: cot(x)=cot(x)1​
=1+cot(x)1​
1+cot(x)1​=0
Multiply both sides by cot(x)
1+cot(x)1​=0
Multiply both sides by cot(x)1⋅cot(x)+cot(x)1​cot(x)=0⋅cot(x)
Simplify
1⋅cot(x)+cot(x)1​cot(x)=0⋅cot(x)
Simplify 1⋅cot(x):cot(x)
1⋅cot(x)
Multiply: 1⋅cot(x)=cot(x)=cot(x)
Simplify cot(x)1​cot(x):1
cot(x)1​cot(x)
Multiply fractions: a⋅cb​=ca⋅b​=cot(x)1⋅cot(x)​
Cancel the common factor: cot(x)=1
Simplify 0⋅cot(x):0
0⋅cot(x)
Apply rule 0⋅a=0=0
cot(x)+1=0
cot(x)+1=0
cot(x)+1=0
Move 1to the right side
cot(x)+1=0
Subtract 1 from both sidescot(x)+1−1=0−1
Simplifycot(x)=−1
cot(x)=−1
Verify Solutions
Find undefined (singularity) points:cot(x)=0
Take the denominator(s) of 1+cot(x)1​ and compare to zero
cot(x)=0
The following points are undefinedcot(x)=0
Combine undefined points with solutions:
cot(x)=−1
General solutions for cot(x)=−1
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
x=43π​+πn
x=43π​+πn
tan2(x)cot(x)−1=0:x=4π​+πn
tan2(x)cot(x)−1=0
Rewrite using trig identities
−1+cot(x)tan2(x)
Use the basic trigonometric identity: tan(x)=cot(x)1​=−1+cot(x)(cot(x)1​)2
cot(x)(cot(x)1​)2=cot(x)1​
cot(x)(cot(x)1​)2
(cot(x)1​)2=cot2(x)1​
(cot(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cot2(x)12​
Apply rule 1a=112=1=cot2(x)1​
=cot2(x)1​cot(x)
Multiply fractions: a⋅cb​=ca⋅b​=cot2(x)1⋅cot(x)​
Multiply: 1⋅cot(x)=cot(x)=cot2(x)cot(x)​
Cancel the common factor: cot(x)=cot(x)1​
=−1+cot(x)1​
−1+cot(x)1​=0
Multiply both sides by cot(x)
−1+cot(x)1​=0
Multiply both sides by cot(x)−1⋅cot(x)+cot(x)1​cot(x)=0⋅cot(x)
Simplify
−1⋅cot(x)+cot(x)1​cot(x)=0⋅cot(x)
Simplify −1⋅cot(x):−cot(x)
−1⋅cot(x)
Multiply: 1⋅cot(x)=cot(x)=−cot(x)
Simplify cot(x)1​cot(x):1
cot(x)1​cot(x)
Multiply fractions: a⋅cb​=ca⋅b​=cot(x)1⋅cot(x)​
Cancel the common factor: cot(x)=1
Simplify 0⋅cot(x):0
0⋅cot(x)
Apply rule 0⋅a=0=0
−cot(x)+1=0
−cot(x)+1=0
−cot(x)+1=0
Move 1to the right side
−cot(x)+1=0
Subtract 1 from both sides−cot(x)+1−1=0−1
Simplify−cot(x)=−1
−cot(x)=−1
Divide both sides by −1
−cot(x)=−1
Divide both sides by −1−1−cot(x)​=−1−1​
Simplifycot(x)=1
cot(x)=1
Verify Solutions
Find undefined (singularity) points:cot(x)=0
Take the denominator(s) of −1+cot(x)1​ and compare to zero
cot(x)=0
The following points are undefinedcot(x)=0
Combine undefined points with solutions:
cot(x)=1
General solutions for cot(x)=1
cot(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cot(x)∓∞3​133​​0−33​​−1−3​​​
x=4π​+πn
x=4π​+πn
Combine all the solutionsx=43π​+πn,x=4π​+πn
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into sec2(x)−1=cot(x)1​
Remove the ones that don't agree with the equation.
Check the solution 43π​+πn:False
43π​+πn
Plug in n=143π​+π1
For sec2(x)−1=cot(x)1​plug inx=43π​+π1sec2(43π​+π1)−1=cot(43π​+π1)1​
Refine1=−1
⇒False
Check the solution 4π​+πn:True
4π​+πn
Plug in n=14π​+π1
For sec2(x)−1=cot(x)1​plug inx=4π​+π1sec2(4π​+π1)−1=cot(4π​+π1)1​
Refine1=1
⇒True
x=4π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

4cos(2x)-3cos(x)+1=02tan^4(x)-tan^2(x)-15=0cos(x)=-sqrt(1/2)6cos(θ)=-6(1+cos(θ))2sin^2(x)+5sin(x)+3=0

Frequently Asked Questions (FAQ)

  • What is the general solution for sec^2(x)-1= 1/(cot(x)) ?

    The general solution for sec^2(x)-1= 1/(cot(x)) is x= pi/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024