Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos(2x)-3cos(x)+1=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(2x)−3cos(x)+1=0

Solution

x=0.59538…+2πn,x=2π−0.59538…+2πn,x=2.04085…+2πn,x=−2.04085…+2πn
+1
Degrees
x=34.11286…∘+360∘n,x=325.88713…∘+360∘n,x=116.93210…∘+360∘n,x=−116.93210…∘+360∘n
Solution steps
4cos(2x)−3cos(x)+1=0
Rewrite using trig identities
1−3cos(x)+4cos(2x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=1−3cos(x)+4(2cos2(x)−1)
Simplify 1−3cos(x)+4(2cos2(x)−1):8cos2(x)−3cos(x)−3
1−3cos(x)+4(2cos2(x)−1)
Expand 4(2cos2(x)−1):8cos2(x)−4
4(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=4,b=2cos2(x),c=1=4⋅2cos2(x)−4⋅1
Simplify 4⋅2cos2(x)−4⋅1:8cos2(x)−4
4⋅2cos2(x)−4⋅1
Multiply the numbers: 4⋅2=8=8cos2(x)−4⋅1
Multiply the numbers: 4⋅1=4=8cos2(x)−4
=8cos2(x)−4
=1−3cos(x)+8cos2(x)−4
Simplify 1−3cos(x)+8cos2(x)−4:8cos2(x)−3cos(x)−3
1−3cos(x)+8cos2(x)−4
Group like terms=−3cos(x)+8cos2(x)+1−4
Add/Subtract the numbers: 1−4=−3=8cos2(x)−3cos(x)−3
=8cos2(x)−3cos(x)−3
=8cos2(x)−3cos(x)−3
−3−3cos(x)+8cos2(x)=0
Solve by substitution
−3−3cos(x)+8cos2(x)=0
Let: cos(x)=u−3−3u+8u2=0
−3−3u+8u2=0:u=163+105​​,u=163−105​​
−3−3u+8u2=0
Write in the standard form ax2+bx+c=08u2−3u−3=0
Solve with the quadratic formula
8u2−3u−3=0
Quadratic Equation Formula:
For a=8,b=−3,c=−3u1,2​=2⋅8−(−3)±(−3)2−4⋅8(−3)​​
u1,2​=2⋅8−(−3)±(−3)2−4⋅8(−3)​​
(−3)2−4⋅8(−3)​=105​
(−3)2−4⋅8(−3)​
Apply rule −(−a)=a=(−3)2+4⋅8⋅3​
Apply exponent rule: (−a)n=an,if n is even(−3)2=32=32+4⋅8⋅3​
Multiply the numbers: 4⋅8⋅3=96=32+96​
32=9=9+96​
Add the numbers: 9+96=105=105​
u1,2​=2⋅8−(−3)±105​​
Separate the solutionsu1​=2⋅8−(−3)+105​​,u2​=2⋅8−(−3)−105​​
u=2⋅8−(−3)+105​​:163+105​​
2⋅8−(−3)+105​​
Apply rule −(−a)=a=2⋅83+105​​
Multiply the numbers: 2⋅8=16=163+105​​
u=2⋅8−(−3)−105​​:163−105​​
2⋅8−(−3)−105​​
Apply rule −(−a)=a=2⋅83−105​​
Multiply the numbers: 2⋅8=16=163−105​​
The solutions to the quadratic equation are:u=163+105​​,u=163−105​​
Substitute back u=cos(x)cos(x)=163+105​​,cos(x)=163−105​​
cos(x)=163+105​​,cos(x)=163−105​​
cos(x)=163+105​​:x=arccos(163+105​​)+2πn,x=2π−arccos(163+105​​)+2πn
cos(x)=163+105​​
Apply trig inverse properties
cos(x)=163+105​​
General solutions for cos(x)=163+105​​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(163+105​​)+2πn,x=2π−arccos(163+105​​)+2πn
x=arccos(163+105​​)+2πn,x=2π−arccos(163+105​​)+2πn
cos(x)=163−105​​:x=arccos(163−105​​)+2πn,x=−arccos(163−105​​)+2πn
cos(x)=163−105​​
Apply trig inverse properties
cos(x)=163−105​​
General solutions for cos(x)=163−105​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(163−105​​)+2πn,x=−arccos(163−105​​)+2πn
x=arccos(163−105​​)+2πn,x=−arccos(163−105​​)+2πn
Combine all the solutionsx=arccos(163+105​​)+2πn,x=2π−arccos(163+105​​)+2πn,x=arccos(163−105​​)+2πn,x=−arccos(163−105​​)+2πn
Show solutions in decimal formx=0.59538…+2πn,x=2π−0.59538…+2πn,x=2.04085…+2πn,x=−2.04085…+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2tan^4(x)-tan^2(x)-15=0cos(x)=-sqrt(1/2)6cos(θ)=-6(1+cos(θ))2sin^2(x)+5sin(x)+3=0cos(A)= 4/5
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024