Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan^4(x)-tan^2(x)-15=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan4(x)−tan2(x)−15=0

Solution

x=3π​+πn,x=32π​+πn
+1
Degrees
x=60∘+180∘n,x=120∘+180∘n
Solution steps
2tan4(x)−tan2(x)−15=0
Solve by substitution
2tan4(x)−tan2(x)−15=0
Let: tan(x)=u2u4−u2−15=0
2u4−u2−15=0:u=3​,u=−3​,u=i25​​,u=−i25​​
2u4−u2−15=0
Rewrite the equation with v=u2 and v2=u42v2−v−15=0
Solve 2v2−v−15=0:v=3,v=−25​
2v2−v−15=0
Solve with the quadratic formula
2v2−v−15=0
Quadratic Equation Formula:
For a=2,b=−1,c=−15v1,2​=2⋅2−(−1)±(−1)2−4⋅2(−15)​​
v1,2​=2⋅2−(−1)±(−1)2−4⋅2(−15)​​
(−1)2−4⋅2(−15)​=11
(−1)2−4⋅2(−15)​
Apply rule −(−a)=a=(−1)2+4⋅2⋅15​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅2⋅15=120
4⋅2⋅15
Multiply the numbers: 4⋅2⋅15=120=120
=1+120​
Add the numbers: 1+120=121=121​
Factor the number: 121=112=112​
Apply radical rule: nan​=a112​=11=11
v1,2​=2⋅2−(−1)±11​
Separate the solutionsv1​=2⋅2−(−1)+11​,v2​=2⋅2−(−1)−11​
v=2⋅2−(−1)+11​:3
2⋅2−(−1)+11​
Apply rule −(−a)=a=2⋅21+11​
Add the numbers: 1+11=12=2⋅212​
Multiply the numbers: 2⋅2=4=412​
Divide the numbers: 412​=3=3
v=2⋅2−(−1)−11​:−25​
2⋅2−(−1)−11​
Apply rule −(−a)=a=2⋅21−11​
Subtract the numbers: 1−11=−10=2⋅2−10​
Multiply the numbers: 2⋅2=4=4−10​
Apply the fraction rule: b−a​=−ba​=−410​
Cancel the common factor: 2=−25​
The solutions to the quadratic equation are:v=3,v=−25​
v=3,v=−25​
Substitute back v=u2,solve for u
Solve u2=3:u=3​,u=−3​
u2=3
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=3​,u=−3​
Solve u2=−25​:u=i25​​,u=−i25​​
u2=−25​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=−25​​,u=−−25​​
Simplify −25​​:i25​​
−25​​
Apply radical rule: −a​=−1​a​−25​​=−1​25​​=−1​25​​
Apply imaginary number rule: −1​=i=i25​​
Simplify −−25​​:−i25​​
−−25​​
Simplify −25​​:i25​​
−25​​
Apply radical rule: −a​=−1​a​−25​​=−1​25​​=−1​25​​
Apply imaginary number rule: −1​=i=i25​​
=−i25​​
u=i25​​,u=−i25​​
The solutions are
u=3​,u=−3​,u=i25​​,u=−i25​​
Substitute back u=tan(x)tan(x)=3​,tan(x)=−3​,tan(x)=i25​​,tan(x)=−i25​​
tan(x)=3​,tan(x)=−3​,tan(x)=i25​​,tan(x)=−i25​​
tan(x)=3​:x=3π​+πn
tan(x)=3​
General solutions for tan(x)=3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=3π​+πn
x=3π​+πn
tan(x)=−3​:x=32π​+πn
tan(x)=−3​
General solutions for tan(x)=−3​
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=32π​+πn
x=32π​+πn
tan(x)=i25​​:No Solution
tan(x)=i25​​
NoSolution
tan(x)=−i25​​:No Solution
tan(x)=−i25​​
NoSolution
Combine all the solutionsx=3π​+πn,x=32π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

cos(x)=-sqrt(1/2)6cos(θ)=-6(1+cos(θ))2sin^2(x)+5sin(x)+3=0cos(A)= 4/5arcsin(x-2)= pi/6

Frequently Asked Questions (FAQ)

  • What is the general solution for 2tan^4(x)-tan^2(x)-15=0 ?

    The general solution for 2tan^4(x)-tan^2(x)-15=0 is x= pi/3+pin,x=(2pi)/3+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024