Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(2x)+sin(4x)=cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)+sin(4x)=cos(x)

Solution

x=2π​+2πn,x=23π​+2πn,x=18π​+32πn​,x=185π​+32πn​
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n,x=10∘+120∘n,x=50∘+120∘n
Solution steps
sin(2x)+sin(4x)=cos(x)
Subtract cos(x) from both sidessin(2x)+sin(4x)−cos(x)=0
Rewrite using trig identities
−cos(x)+sin(2x)+sin(4x)
Use the Sum to Product identity: sin(s)+sin(t)=2sin(2s+t​)cos(2s−t​)=−cos(x)+2sin(22x+4x​)cos(22x−4x​)
2sin(22x+4x​)cos(22x−4x​)=2cos(x)sin(3x)
2sin(22x+4x​)cos(22x−4x​)
22x+4x​=3x
22x+4x​
Add similar elements: 2x+4x=6x=26x​
Divide the numbers: 26​=3=3x
=2sin(3x)cos(22x−4x​)
22x−4x​=−x
22x−4x​
Add similar elements: 2x−4x=−2x=2−2x​
Apply the fraction rule: b−a​=−ba​=−22x​
Divide the numbers: 22​=1=−x
=2sin(3x)cos(−x)
Use the negative angle identity: cos(−x)=cos(x)=2cos(x)sin(3x)
=−cos(x)+2cos(x)sin(3x)
−cos(x)+2cos(x)sin(3x)=0
Factor −cos(x)+2cos(x)sin(3x):cos(x)(2sin(3x)−1)
−cos(x)+2cos(x)sin(3x)
Factor out common term cos(x)=cos(x)(−1+2sin(3x))
cos(x)(2sin(3x)−1)=0
Solving each part separatelycos(x)=0or2sin(3x)−1=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
2sin(3x)−1=0:x=18π​+32πn​,x=185π​+32πn​
2sin(3x)−1=0
Move 1to the right side
2sin(3x)−1=0
Add 1 to both sides2sin(3x)−1+1=0+1
Simplify2sin(3x)=1
2sin(3x)=1
Divide both sides by 2
2sin(3x)=1
Divide both sides by 222sin(3x)​=21​
Simplifysin(3x)=21​
sin(3x)=21​
General solutions for sin(3x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
3x=6π​+2πn,3x=65π​+2πn
3x=6π​+2πn,3x=65π​+2πn
Solve 3x=6π​+2πn:x=18π​+32πn​
3x=6π​+2πn
Divide both sides by 3
3x=6π​+2πn
Divide both sides by 333x​=36π​​+32πn​
Simplify
33x​=36π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 36π​​+32πn​:18π​+32πn​
36π​​+32πn​
36π​​=18π​
36π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅3π​
Multiply the numbers: 6⋅3=18=18π​
=18π​+32πn​
x=18π​+32πn​
x=18π​+32πn​
x=18π​+32πn​
Solve 3x=65π​+2πn:x=185π​+32πn​
3x=65π​+2πn
Divide both sides by 3
3x=65π​+2πn
Divide both sides by 333x​=365π​​+32πn​
Simplify
33x​=365π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 365π​​+32πn​:185π​+32πn​
365π​​+32πn​
365π​​=185π​
365π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅35π​
Multiply the numbers: 6⋅3=18=185π​
=185π​+32πn​
x=185π​+32πn​
x=185π​+32πn​
x=185π​+32πn​
x=18π​+32πn​,x=185π​+32πn​
Combine all the solutionsx=2π​+2πn,x=23π​+2πn,x=18π​+32πn​,x=185π​+32πn​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin(x)=-0.684tan(x-60)=-1.263sec(x)=-5tan(3x-10)=cot(2x-40)csc(x)-sin(x)=cot(x)*csc(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024