Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

csc(x)-sin(x)=cot(x)*csc(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

csc(x)−sin(x)=cot(x)⋅csc(x)

Solution

x=2π​+2πn,x=23π​+2πn
+1
Degrees
x=90∘+360∘n,x=270∘+360∘n
Solution steps
csc(x)−sin(x)=cot(x)csc(x)
Subtract cot(x)csc(x) from both sidescsc(x)−sin(x)−cot(x)csc(x)=0
Express with sin, cos
csc(x)−sin(x)−cot(x)csc(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​−sin(x)−cot(x)sin(x)1​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=sin(x)1​−sin(x)−sin(x)cos(x)​⋅sin(x)1​
Simplify sin(x)1​−sin(x)−sin(x)cos(x)​⋅sin(x)1​:sin2(x)sin(x)−sin3(x)−cos(x)​
sin(x)1​−sin(x)−sin(x)cos(x)​⋅sin(x)1​
sin(x)cos(x)​⋅sin(x)1​=sin2(x)cos(x)​
sin(x)cos(x)​⋅sin(x)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(x)sin(x)cos(x)⋅1​
Multiply: cos(x)⋅1=cos(x)=sin(x)sin(x)cos(x)​
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
Add the numbers: 1+1=2=sin2(x)
=sin2(x)cos(x)​
=sin(x)1​−sin(x)−sin2(x)cos(x)​
Convert element to fraction: sin(x)=1sin(x)​=sin(x)1​−1sin(x)​−sin2(x)cos(x)​
Least Common Multiplier of sin(x),1,sin2(x):sin2(x)
sin(x),1,sin2(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=sin2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin2(x)
For sin(x)1​:multiply the denominator and numerator by sin(x)sin(x)1​=sin(x)sin(x)1⋅sin(x)​=sin2(x)sin(x)​
For 1sin(x)​:multiply the denominator and numerator by sin2(x)1sin(x)​=1⋅sin2(x)sin(x)sin2(x)​=sin2(x)sin3(x)​
=sin2(x)sin(x)​−sin2(x)sin3(x)​−sin2(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin2(x)sin(x)−sin3(x)−cos(x)​
=sin2(x)sin(x)−sin3(x)−cos(x)​
sin2(x)−cos(x)+sin(x)−sin3(x)​=0
g(x)f(x)​=0⇒f(x)=0−cos(x)+sin(x)−sin3(x)=0
Apply exponent rule: ab=a2ab−2−cos(x)+sin(x)−sin(x)sin2(x)=0
Rewrite using trig identities
−cos(x)+sin(x)−sin(x)sin2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos(x)+sin(x)−sin(x)(1−cos2(x))
Simplify −cos(x)+sin(x)−sin(x)(1−cos2(x)):−cos(x)+cos2(x)sin(x)
−cos(x)+sin(x)−sin(x)(1−cos2(x))
Expand −sin(x)(1−cos2(x)):−sin(x)+cos2(x)sin(x)
−sin(x)(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−sin(x),b=1,c=cos2(x)=−sin(x)⋅1−(−sin(x))cos2(x)
Apply minus-plus rules−(−a)=a=−1⋅sin(x)+cos2(x)sin(x)
Multiply: 1⋅sin(x)=sin(x)=−sin(x)+cos2(x)sin(x)
=−cos(x)+sin(x)−sin(x)+cos2(x)sin(x)
Add similar elements: sin(x)−sin(x)=0=−cos(x)+cos2(x)sin(x)
=−cos(x)+cos2(x)sin(x)
−cos(x)+cos2(x)sin(x)=0
Factor −cos(x)+cos2(x)sin(x):cos(x)(−1+sin(x)cos(x))
−cos(x)+cos2(x)sin(x)
Apply exponent rule: ab+c=abacsin(x)cos2(x)=cos(x)cos(x)=−cos(x)+cos(x)cos(x)
Factor out common term cos(x)=cos(x)(−1+sin(x)cos(x))
cos(x)(−1+sin(x)cos(x))=0
Solving each part separatelycos(x)=0or−1+sin(x)cos(x)=0
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
−1+sin(x)cos(x)=0:No Solution
−1+sin(x)cos(x)=0
Rewrite using trig identities
−1+sin(x)cos(x)
Use the Double Angle identity: 2sin(x)cos(x)=sin(2x)sin(x)cos(x)=2sin(2x)​=−1+2sin(2x)​
−1+2sin(2x)​=0
Move 1to the right side
−1+2sin(2x)​=0
Add 1 to both sides−1+2sin(2x)​+1=0+1
Simplify2sin(2x)​=1
2sin(2x)​=1
Multiply both sides by 2
2sin(2x)​=1
Multiply both sides by 222sin(2x)​=1⋅2
Simplifysin(2x)=2
sin(2x)=2
−1≤sin(x)≤1NoSolution
Combine all the solutionsx=2π​+2πn,x=23π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)= 4/31=sin(t)+sqrt(3)cos(t)cosh(x)= 5/4sec(θ)-sqrt(2)tan(θ)=02sin(x-pi/3)=-sqrt(2)

Frequently Asked Questions (FAQ)

  • What is the general solution for csc(x)-sin(x)=cot(x)*csc(x) ?

    The general solution for csc(x)-sin(x)=cot(x)*csc(x) is x= pi/2+2pin,x=(3pi)/2+2pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024