Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)+cot(x)=2sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)+cot(x)=22​

Solution

x=0.39269…+πn,x=1.17809…+πn
+1
Degrees
x=22.5∘+180∘n,x=67.5∘+180∘n
Solution steps
tan(x)+cot(x)=22​
Subtract 22​ from both sidestan(x)+cot(x)−22​=0
Rewrite using trig identities
cot(x)+tan(x)−22​
Use the basic trigonometric identity: tan(x)=cot(x)1​=cot(x)+cot(x)1​−22​
cot(x)+cot(x)1​−22​=0
Solve by substitution
cot(x)+cot(x)1​−22​=0
Let: cot(x)=uu+u1​−22​=0
u+u1​−22​=0:u=2​+1,u=2​−1
u+u1​−22​=0
Multiply both sides by u
u+u1​−22​=0
Multiply both sides by uuu+u1​u−22​u=0⋅u
Simplify
uu+u1​u−22​u=0⋅u
Simplify uu:u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u2+1−22​u=0
u2+1−22​u=0
u2+1−22​u=0
Solve u2+1−22​u=0:u=2​+1,u=2​−1
u2+1−22​u=0
Write in the standard form ax2+bx+c=0u2−22​u+1=0
Solve with the quadratic formula
u2−22​u+1=0
Quadratic Equation Formula:
For a=1,b=−22​,c=1u1,2​=2⋅1−(−22​)±(−22​)2−4⋅1⋅1​​
u1,2​=2⋅1−(−22​)±(−22​)2−4⋅1⋅1​​
(−22​)2−4⋅1⋅1​=2
(−22​)2−4⋅1⋅1​
(−22​)2=23
(−22​)2
Apply exponent rule: (−a)n=an,if n is even(−22​)2=(22​)2=(22​)2
Apply exponent rule: (a⋅b)n=anbn=22(2​)2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=22⋅2
Apply exponent rule: ab⋅ac=ab+c22⋅2=22+1=22+1
Add the numbers: 2+1=3=23
4⋅1⋅1=4
4⋅1⋅1
Multiply the numbers: 4⋅1⋅1=4=4
=23−4​
23=8=8−4​
Subtract the numbers: 8−4=4=4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u1,2​=2⋅1−(−22​)±2​
Separate the solutionsu1​=2⋅1−(−22​)+2​,u2​=2⋅1−(−22​)−2​
u=2⋅1−(−22​)+2​:2​+1
2⋅1−(−22​)+2​
Apply rule −(−a)=a=2⋅122​+2​
Multiply the numbers: 2⋅1=2=222​+2​
Factor 22​+2:2(2​+1)
22​+2
Rewrite as=22​+2⋅1
Factor out common term 2=2(2​+1)
=22(2​+1)​
Divide the numbers: 22​=1=2​+1
u=2⋅1−(−22​)−2​:2​−1
2⋅1−(−22​)−2​
Apply rule −(−a)=a=2⋅122​−2​
Multiply the numbers: 2⋅1=2=222​−2​
Factor 22​−2:2(2​−1)
22​−2
Rewrite as=22​−2⋅1
Factor out common term 2=2(2​−1)
=22(2​−1)​
Divide the numbers: 22​=1=2​−1
The solutions to the quadratic equation are:u=2​+1,u=2​−1
u=2​+1,u=2​−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u+u1​−22​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=2​+1,u=2​−1
Substitute back u=cot(x)cot(x)=2​+1,cot(x)=2​−1
cot(x)=2​+1,cot(x)=2​−1
cot(x)=2​+1:x=arccot(2​+1)+πn
cot(x)=2​+1
Apply trig inverse properties
cot(x)=2​+1
General solutions for cot(x)=2​+1cot(x)=a⇒x=arccot(a)+πnx=arccot(2​+1)+πn
x=arccot(2​+1)+πn
cot(x)=2​−1:x=arccot(2​−1)+πn
cot(x)=2​−1
Apply trig inverse properties
cot(x)=2​−1
General solutions for cot(x)=2​−1cot(x)=a⇒x=arccot(a)+πnx=arccot(2​−1)+πn
x=arccot(2​−1)+πn
Combine all the solutionsx=arccot(2​+1)+πn,x=arccot(2​−1)+πn
Show solutions in decimal formx=0.39269…+πn,x=1.17809…+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(30t)=-0.62cos(x)+2sqrt(2)=3sec(x)cot^2(x)-3cot(x)-2=0cos(x-75)= 1/2sin(2x-23)=-(sqrt(2))/2

Frequently Asked Questions (FAQ)

  • What is the general solution for tan(x)+cot(x)=2sqrt(2) ?

    The general solution for tan(x)+cot(x)=2sqrt(2) is x=0.39269…+pin,x=1.17809…+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024