Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3x)+sin(x)=2cos^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x)+sin(x)=2cos2(x)

Solution

x=6π​+2πn,x=65π​+2πn,x=23π​+2πn,x=2π​+2πn
+1
Degrees
x=30∘+360∘n,x=150∘+360∘n,x=270∘+360∘n,x=90∘+360∘n
Solution steps
sin(3x)+sin(x)=2cos2(x)
Subtract 2cos2(x) from both sidessin(3x)+sin(x)−2cos2(x)=0
Rewrite using trig identities
sin(3x)+sin(x)−2cos2(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=sin(3x)+sin(x)−2(1−sin2(x))
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Rewrite using trig identities
sin(3x)
Rewrite as=sin(2x+x)
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Simplify cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Use the Double Angle identity: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Expand (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Expand sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Apply the distributive law: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Simplify 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multiply: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Expand 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Simplify 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multiply the numbers: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Apply exponent rule: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Add the numbers: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Simplify sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Group like terms=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Add similar elements: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Add similar elements: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)+sin(x)−2(1−sin2(x))
Simplify 3sin(x)−4sin3(x)+sin(x)−2(1−sin2(x)):4sin(x)−4sin3(x)+2sin2(x)−2
3sin(x)−4sin3(x)+sin(x)−2(1−sin2(x))
Expand −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2sin2(x)
Multiply the numbers: 2⋅1=2=−2+2sin2(x)
=3sin(x)−4sin3(x)+sin(x)−2+2sin2(x)
Simplify 3sin(x)−4sin3(x)+sin(x)−2+2sin2(x):4sin(x)−4sin3(x)+2sin2(x)−2
3sin(x)−4sin3(x)+sin(x)−2+2sin2(x)
Group like terms=3sin(x)−4sin3(x)+sin(x)+2sin2(x)−2
Add similar elements: 3sin(x)+sin(x)=4sin(x)=4sin(x)−4sin3(x)+2sin2(x)−2
=4sin(x)−4sin3(x)+2sin2(x)−2
=4sin(x)−4sin3(x)+2sin2(x)−2
−2+2sin2(x)+4sin(x)−4sin3(x)=0
Solve by substitution
−2+2sin2(x)+4sin(x)−4sin3(x)=0
Let: sin(x)=u−2+2u2+4u−4u3=0
−2+2u2+4u−4u3=0:u=21​,u=−1,u=1
−2+2u2+4u−4u3=0
Write in the standard form an​xn+…+a1​x+a0​=0−4u3+2u2+4u−2=0
Factor −4u3+2u2+4u−2:−2(2u−1)(u+1)(u−1)
−4u3+2u2+4u−2
Factor out common term −2:−2(2u3−u2−2u+1)
−4u3+2u2+4u−2
Rewrite 4 as 2⋅2Rewrite 4 as 2⋅2=−2⋅2u3+2u2+2⋅2u−2
Factor out common term −2=−2(2u3−u2−2u+1)
=−2(2u3−u2−2u+1)
Factor 2u3−u2−2u+1:(2u−1)(u+1)(u−1)
2u3−u2−2u+1
=(2u3−u2)+(−2u+1)
Factor out −1from −2u+1:−(2u−1)
−2u+1
Factor out common term −1=−(2u−1)
Factor out u2from 2u3−u2:u2(2u−1)
2u3−u2
Apply exponent rule: ab+c=abacu3=uu2=2uu2−u2
Factor out common term u2=u2(2u−1)
=−(2u−1)+u2(2u−1)
Factor out common term 2u−1=(2u−1)(u2−1)
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(2u−1)(u+1)(u−1)
=−2(2u−1)(u+1)(u−1)
−2(2u−1)(u+1)(u−1)=0
Using the Zero Factor Principle: If ab=0then a=0or b=02u−1=0oru+1=0oru−1=0
Solve 2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
The solutions areu=21​,u=−1,u=1
Substitute back u=sin(x)sin(x)=21​,sin(x)=−1,sin(x)=1
sin(x)=21​,sin(x)=−1,sin(x)=1
sin(x)=21​:x=6π​+2πn,x=65π​+2πn
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
sin(x)=−1:x=23π​+2πn
sin(x)=−1
General solutions for sin(x)=−1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=23π​+2πn
x=23π​+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
General solutions for sin(x)=1
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combine all the solutionsx=6π​+2πn,x=65π​+2πn,x=23π​+2πn,x=2π​+2πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

tan(θ)= 5/92sin(x)+3cos(x)=0tan(x)+cot(x)=2sqrt(2)sin(30t)=-0.62cos(x)+2sqrt(2)=3sec(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024