Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cot(x)+sec^2(x)=0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cot(x)+sec2(x)=0

Solution

x=43π​+πn
+1
Degrees
x=135∘+180∘n
Solution steps
2cot(x)+sec2(x)=0
Rewrite using trig identities
sec2(x)+2cot(x)
Use the basic trigonometric identity: cot(x)=tan(x)1​=sec2(x)+2⋅tan(x)1​
2⋅tan(x)1​=tan(x)2​
2⋅tan(x)1​
Multiply fractions: a⋅cb​=ca⋅b​=tan(x)1⋅2​
Multiply the numbers: 1⋅2=2=tan(x)2​
=sec2(x)+tan(x)2​
Use the Pythagorean identity: sec2(x)=tan2(x)+1=tan(x)2​+tan2(x)+1
1+tan(x)2​+tan2(x)=0
Solve by substitution
1+tan(x)2​+tan2(x)=0
Let: tan(x)=u1+u2​+u2=0
1+u2​+u2=0:u=−1,u=21​+i27​​,u=21​−i27​​
1+u2​+u2=0
Multiply both sides by u
1+u2​+u2=0
Multiply both sides by u1⋅u+u2​u+u2u=0⋅u
Simplify
1⋅u+u2​u+u2u=0⋅u
Simplify 1⋅u:u
1⋅u
Multiply: 1⋅u=u=u
Simplify u2​u:2
u2​u
Multiply fractions: a⋅cb​=ca⋅b​=u2u​
Cancel the common factor: u=2
Simplify u2u:u3
u2u
Apply exponent rule: ab⋅ac=ab+cu2u=u2+1=u2+1
Add the numbers: 2+1=3=u3
Simplify 0⋅u:0
0⋅u
Apply rule 0⋅a=0=0
u+2+u3=0
u+2+u3=0
u+2+u3=0
Solve u+2+u3=0:u=−1,u=21​+i27​​,u=21​−i27​​
u+2+u3=0
Write in the standard form an​xn+…+a1​x+a0​=0u3+u+2=0
Factor u3+u+2:(u+1)(u2−u+2)
u3+u+2
Use the rational root theorem
a0​=2,an​=1
The dividers of a0​:1,2,The dividers of an​:1
Therefore, check the following rational numbers:±11,2​
−11​ is a root of the expression, so factor out u+1
=(u+1)u+1u3+u+2​
u+1u3+u+2​=u2−u+2
u+1u3+u+2​
Divide u+1u3+u+2​:u+1u3+u+2​=u2+u+1−u2+u+2​
Divide the leading coefficients of the numerator u3+u+2
and the divisor u+1:uu3​=u2
Quotient=u2
Multiply u+1 by u2:u3+u2Subtract u3+u2 from u3+u+2 to get new remainderRemainder=−u2+u+2
Thereforeu+1u3+u+2​=u2+u+1−u2+u+2​
=u2+u+1−u2+u+2​
Divide u+1−u2+u+2​:u+1−u2+u+2​=−u+u+12u+2​
Divide the leading coefficients of the numerator −u2+u+2
and the divisor u+1:u−u2​=−u
Quotient=−u
Multiply u+1 by −u:−u2−uSubtract −u2−u from −u2+u+2 to get new remainderRemainder=2u+2
Thereforeu+1−u2+u+2​=−u+u+12u+2​
=u2−u+u+12u+2​
Divide u+12u+2​:u+12u+2​=2
Divide the leading coefficients of the numerator 2u+2
and the divisor u+1:u2u​=2
Quotient=2
Multiply u+1 by 2:2u+2Subtract 2u+2 from 2u+2 to get new remainderRemainder=0
Thereforeu+12u+2​=2
=u2−u+2
=(u+1)(u2−u+2)
(u+1)(u2−u+2)=0
Using the Zero Factor Principle: If ab=0then a=0or b=0u+1=0oru2−u+2=0
Solve u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
Solve u2−u+2=0:u=21​+i27​​,u=21​−i27​​
u2−u+2=0
Solve with the quadratic formula
u2−u+2=0
Quadratic Equation Formula:
For a=1,b=−1,c=2u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅2​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅2​​
Simplify (−1)2−4⋅1⋅2​:7​i
(−1)2−4⋅1⋅2​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅2=8
4⋅1⋅2
Multiply the numbers: 4⋅1⋅2=8=8
=1−8​
Subtract the numbers: 1−8=−7=−7​
Apply radical rule: −a​=−1​a​−7​=−1​7​=−1​7​
Apply imaginary number rule: −1​=i=7​i
u1,2​=2⋅1−(−1)±7​i​
Separate the solutionsu1​=2⋅1−(−1)+7​i​,u2​=2⋅1−(−1)−7​i​
u=2⋅1−(−1)+7​i​:21​+i27​​
2⋅1−(−1)+7​i​
Apply rule −(−a)=a=2⋅11+7​i​
Multiply the numbers: 2⋅1=2=21+7​i​
Rewrite 21+7​i​ in standard complex form: 21​+27​​i
21+7​i​
Apply the fraction rule: ca±b​=ca​±cb​21+7​i​=21​+27​i​=21​+27​i​
=21​+27​​i
u=2⋅1−(−1)−7​i​:21​−i27​​
2⋅1−(−1)−7​i​
Apply rule −(−a)=a=2⋅11−7​i​
Multiply the numbers: 2⋅1=2=21−7​i​
Rewrite 21−7​i​ in standard complex form: 21​−27​​i
21−7​i​
Apply the fraction rule: ca±b​=ca​±cb​21−7​i​=21​−27​i​=21​−27​i​
=21​−27​​i
The solutions to the quadratic equation are:u=21​+i27​​,u=21​−i27​​
The solutions areu=−1,u=21​+i27​​,u=21​−i27​​
u=−1,u=21​+i27​​,u=21​−i27​​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 1+u2​+u2 and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=−1,u=21​+i27​​,u=21​−i27​​
Substitute back u=tan(x)tan(x)=−1,tan(x)=21​+i27​​,tan(x)=21​−i27​​
tan(x)=−1,tan(x)=21​+i27​​,tan(x)=21​−i27​​
tan(x)=−1:x=43π​+πn
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
tan(x)=21​+i27​​:No Solution
tan(x)=21​+i27​​
NoSolution
tan(x)=21​−i27​​:No Solution
tan(x)=21​−i27​​
NoSolution
Combine all the solutionsx=43π​+πn

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(x)+sin(x/2)=04sin^2(x)+2cos^2(x)=3cos^2(θ)-3sin(2θ)+sin^2(θ)+2sin^2(2θ)=05cos(x)-10sin(x)cos(x)=0sin(2x+4)=cos(46)

Frequently Asked Questions (FAQ)

  • What is the general solution for 2cot(x)+sec^2(x)=0 ?

    The general solution for 2cot(x)+sec^2(x)=0 is x=(3pi)/4+pin
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024